Deutsch English Français Italiano |
<caa5mDgsV2nBzZ1zLSzR3jelnhE@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!2.eu.feeder.erje.net!feeder.erje.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp Message-ID: <caa5mDgsV2nBzZ1zLSzR3jelnhE@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: [SR] Usefulness of real velocities in accelerated relativistic frames of reference. References: <h-QIa4vokaI12HpxgnrgFM9XOF0@jntp> <usq9rs$1lobo$1@i2pn2.org> <1bIiiMt-l_wW2d7hcr84gCA75z0@jntp> <ust42t$1pilc$1@i2pn2.org> Newsgroups: sci.physics.relativity JNTP-HashClient: 4JJ7tdhNl5H-pxDrzoCcDNI3TTc JNTP-ThreadID: 1cetg9ltuC_-ANX4baQoDcFLtzU JNTP-Uri: http://news2.nemoweb.net/?DataID=caa5mDgsV2nBzZ1zLSzR3jelnhE@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Thu, 14 Mar 24 02:00:57 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="8e9c64a29b0e5dc904f270dd7ef68fe2b6d8e460"; logging-data="2024-03-14T02:00:57Z/8772972"; posting-account="4@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: Richard Hachel <r.hachel@tiscali.fr> Bytes: 2357 Lines: 35 Le 13/03/2024 à 21:59, "Paul B. Andersen" a écrit : > Den 12.03.2024 20:42, skrev Richard Hachel: >>> It is obviously normal to keep the proper acceleration constant, >>> and then Vrm ≠ (1/2)Vri We know that in accelerated frames of reference the average speed is proportional to the instantaneous speed. Let Vrm=(1/2)Vri We are talking about real relativistic speeds (Richard Verret's hobby). But we know that relativistic physicists do not use this notion, and it is important to remind them of the relationship between real speed and observable speed. Vr=Vo/sqrt(1-Vo²/c²) This immediately leads us to Vom/sqrt(1-Vom²/c²)=(1/2)Voi/sqrt(1-Voi²/c²) and therefore to: Vom²(1-Voi²/c²)=(1/4)Voi²(1-Vom²/c²) Let Vom²=(1/4)Voi²+(3/4)Voi².Vom²/c² Hence Vom=(1/2)Voi/sqrt(1-(3/4)Vom²/c²) and, conversely, Voi=2.Vom/sqrt(1+3Vom²/c²) R.H.