Deutsch   English   Français   Italiano  
<s9uKDWzlXBaduNJ4LOkPWeJ6k7U@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!3.eu.feeder.erje.net!feeder.erje.net!fdn.fr!usenet-fr.net!pasdenom.info!from-devjntp
Message-ID: <s9uKDWzlXBaduNJ4LOkPWeJ6k7U@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: There is a first/smallest integer (in =?UTF-8?Q?M=C3=BCckenland=29?=
References: <v78aei$1qhrg$2@dont-email.me> <v78u39$1ubd0$1@dont-email.me> <Dt7UjtVV_Fl-l1XYEJYeiucc7v8@jntp>
 <41d2e5d4-8cb6-4edb-ae2c-77c0b64a6831@att.net> <v7aair$29gcl$1@dont-email.me>
 <dae176b5-51d9-48cc-83ac-5b2dfe78c58c@att.net> <_3PdRlVY_XR6s8COuF91xa6k7Hw@jntp>
 <cf85fc74-9974-4f6b-b5ab-600e25b19b8d@att.net> <_yU-Ua_pBHYXLfdfOPeH-udJXw8@jntp>
 <88398fce-9050-464f-a4ca-62944a3e52e4@att.net>
Newsgroups: sci.math
JNTP-HashClient: 83mJ5hQOeTLdt9uUBdQlIM5tZ0Q
JNTP-ThreadID: v78aei$1qhrg$2@dont-email.me
JNTP-Uri: http://news2.nemoweb.net/?DataID=s9uKDWzlXBaduNJ4LOkPWeJ6k7U@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Fri, 19 Jul 24 14:03:48 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="82b75c1d0a83e677ff646b52485f72f8b23749df"; logging-data="2024-07-19T14:03:48Z/8955101"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: WM <wolfgang.mueckenheim@tha.de>
Bytes: 2540
Lines: 38

Le 18/07/2024 à 23:42, Jim Burns a écrit :
> On 7/18/2024 4:55 PM, WM wrote:

>> But if
>> for all points x > 0
>> there are ℵo smaller unit fractions,
>> then
>> for the interval (0, oo)
>> there are ℵo smaller unit fractions.
> 
> No.

Like Bob. No reason to continue.

> For each point x > 0
> there are
> step.down non.⅟⌈⅟x⌉.step.up well.ordered.by.>
> unit.fractions in (0,x] which,
> because
> step.down non.⅟⌈⅟x⌉.step.up well.ordered.by.>
> are ℵ₀.many.

Of all unit fractions left of any x > 0, ℵ₀ are the same, finitely 
many are different.
> 
> No unit fractions are smaller than (0,∞)

Right. That means Fritsches x are not all x.
> 
>> Or is there a point in (0, oo) which
>> is not an x > 0?
> 
> No, but
> there is no point x in (0,∞) such that

irrelevant. All x > 0 are there and nothing else.

Regards, WM