X-Received: by 2002:a05:620a:78b:: with SMTP id 11mr22499525qka.0.1615758690744;
        Sun, 14 Mar 2021 14:51:30 -0700 (PDT)
X-Received: by 2002:a37:a085:: with SMTP id j127mr21585634qke.206.1615758690557;
 Sun, 14 Mar 2021 14:51:30 -0700 (PDT)
Path: ...!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail
Newsgroups: rec.puzzles
Date: Sun, 14 Mar 2021 14:51:30 -0700 (PDT)
In-Reply-To: <20210312140056.09ea789ace24af969e5a87f8@g{oogle}mail.com>
Injection-Info: google-groups.googlegroups.com; posting-host=69.251.144.37; posting-account=RY8SewoAAACVLxHkdczJqnZMQf-Svvk5
NNTP-Posting-Host: 69.251.144.37
References: <20210307210240.ad49977db2c299e883879ba9@gmail.com>
 <bff9cb5e-bccb-40da-b9cf-120fa1b28c96n@googlegroups.com> <20210312140056.09ea789ace24af969e5a87f8@g{oogle}mail.com>
User-Agent: G2/1.0
MIME-Version: 1.0
Message-ID: <34bb6b30-a6a3-4693-9ed3-4abb71be206dn@googlegroups.com>
Subject: Re: Master Mind from Journeyman project
From: leflynn <leflynn@hotmail.com>
Injection-Date: Sun, 14 Mar 2021 21:51:30 +0000
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
Bytes: 3184
Lines: 73

On Friday, March 12, 2021 at 6:01:00 AM UTC-5, Anton Shepelev wrote:
> leflynn:=20
>=20
> > Let=D0=A2s start with five colors represented by a, b, c, d and
> > e. There are 10 possible choices for the three colors not=20
> > counting positioning. I would list the ten cases and then=20
> > cross them off when they are eliminated.
> Yes, finding a combination instead of a permutation is much=20
> easier. I still, however, am at a loss about solving the=20
> original problem as fast as the game requires.=20
>=20
> --=20
> () ascii ribbon campaign - against html e-mail=20
> /\ http://preview.tinyurl.com/qcy6mjc [archived]

I see finding a combination as part of the problem fortunately, you can do =
both at once.

Here is a decision table. You'll need to view it with a fixed width font.
 G1   G2   G3   G4   G5
(ABC)=20
 3p0 (BCA)(CAB)
 3p1 (ACB)(BAC)(CBA)=20
 2p0 (BAD)=20
      3p1 (BDA)(DAB)
      2p0 (CDA)
           3p0 (DCA)
           2p0 (DCB)
           2p2 (CDB)=20
      2p1 (BEA) (EAB)
      2p2 (BAE)(BCD)(CAD)
      1p0 (CEA)=20
           3p1 (ECA)
           2p0 (ECB)=20
           2p2 (CEB)
      1p1 (CAE)(BCE)
 2p1 (ADB)
      3p0 (DBA)
      2p0 (CBD)
           3p0 (BDC)
           1p0 (DAC)
           1p1 (EBA)=20
      2p1 (ACD)
      2p2 (AEB)
      1p0 (BEC)
           3p0 (CBE)
           2p1 (EAC)=20
      1p1 (ACE)
 2p2 (ABD)
      2p2 (ABE)
      2p1 (ADC)(DBC)
      1p1 (AEC)(EBC)
 1p0 (DAE)
      3p0 (EDA)
      3p1 (DEA)(EAD)
      2p0 (BED)
           3p0 (EDB)
           3p1 (DEB)=20
           2p0 (ECD)=20
           2p2 (CED)
      2p1 (BDE)(CDE)
      2p2 (DCE)
 1p1 (ADE)=20
      3p1 (AED)
      2p0 (DEC)(EBD)
      2p1 (DBE)(EDC)

Is (DCE) in the correct place?
  Guess1(ABC) 1p0; Guess2(DAE) 2p2; Guess3 (DCE)
Is (CAD) in the correct place?
  Guess1(ABC) 2p0; Guess2(BAD) 2p2; Guess3(BAE) 1P; Guess4(BCD) 2p1; Guess5=
(CAD)