X-Received: by 2002:a05:620a:78b:: with SMTP id 11mr22499525qka.0.1615758690744; Sun, 14 Mar 2021 14:51:30 -0700 (PDT) X-Received: by 2002:a37:a085:: with SMTP id j127mr21585634qke.206.1615758690557; Sun, 14 Mar 2021 14:51:30 -0700 (PDT) Path: ...!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail Newsgroups: rec.puzzles Date: Sun, 14 Mar 2021 14:51:30 -0700 (PDT) In-Reply-To: <20210312140056.09ea789ace24af969e5a87f8@g{oogle}mail.com> Injection-Info: google-groups.googlegroups.com; posting-host=69.251.144.37; posting-account=RY8SewoAAACVLxHkdczJqnZMQf-Svvk5 NNTP-Posting-Host: 69.251.144.37 References: <20210307210240.ad49977db2c299e883879ba9@gmail.com> <20210312140056.09ea789ace24af969e5a87f8@g{oogle}mail.com> User-Agent: G2/1.0 MIME-Version: 1.0 Message-ID: <34bb6b30-a6a3-4693-9ed3-4abb71be206dn@googlegroups.com> Subject: Re: Master Mind from Journeyman project From: leflynn Injection-Date: Sun, 14 Mar 2021 21:51:30 +0000 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Bytes: 3184 Lines: 73 On Friday, March 12, 2021 at 6:01:00 AM UTC-5, Anton Shepelev wrote: > leflynn:=20 >=20 > > Let=D0=A2s start with five colors represented by a, b, c, d and > > e. There are 10 possible choices for the three colors not=20 > > counting positioning. I would list the ten cases and then=20 > > cross them off when they are eliminated. > Yes, finding a combination instead of a permutation is much=20 > easier. I still, however, am at a loss about solving the=20 > original problem as fast as the game requires.=20 >=20 > --=20 > () ascii ribbon campaign - against html e-mail=20 > /\ http://preview.tinyurl.com/qcy6mjc [archived] I see finding a combination as part of the problem fortunately, you can do = both at once. Here is a decision table. You'll need to view it with a fixed width font. G1 G2 G3 G4 G5 (ABC)=20 3p0 (BCA)(CAB) 3p1 (ACB)(BAC)(CBA)=20 2p0 (BAD)=20 3p1 (BDA)(DAB) 2p0 (CDA) 3p0 (DCA) 2p0 (DCB) 2p2 (CDB)=20 2p1 (BEA) (EAB) 2p2 (BAE)(BCD)(CAD) 1p0 (CEA)=20 3p1 (ECA) 2p0 (ECB)=20 2p2 (CEB) 1p1 (CAE)(BCE) 2p1 (ADB) 3p0 (DBA) 2p0 (CBD) 3p0 (BDC) 1p0 (DAC) 1p1 (EBA)=20 2p1 (ACD) 2p2 (AEB) 1p0 (BEC) 3p0 (CBE) 2p1 (EAC)=20 1p1 (ACE) 2p2 (ABD) 2p2 (ABE) 2p1 (ADC)(DBC) 1p1 (AEC)(EBC) 1p0 (DAE) 3p0 (EDA) 3p1 (DEA)(EAD) 2p0 (BED) 3p0 (EDB) 3p1 (DEB)=20 2p0 (ECD)=20 2p2 (CED) 2p1 (BDE)(CDE) 2p2 (DCE) 1p1 (ADE)=20 3p1 (AED) 2p0 (DEC)(EBD) 2p1 (DBE)(EDC) Is (DCE) in the correct place? Guess1(ABC) 1p0; Guess2(DAE) 2p2; Guess3 (DCE) Is (CAD) in the correct place? Guess1(ABC) 2p0; Guess2(BAD) 2p2; Guess3(BAE) 1P; Guess4(BCD) 2p1; Guess5= (CAD)