X-Received: by 2002:a05:622a:a1a:b0:421:c480:111 with SMTP id bv26-20020a05622a0a1a00b00421c4800111mr132902qtb.6.1700735681939; Thu, 23 Nov 2023 02:34:41 -0800 (PST) X-Received: by 2002:a63:5a58:0:b0:5bd:d60f:231d with SMTP id k24-20020a635a58000000b005bdd60f231dmr973416pgm.3.1700735681570; Thu, 23 Nov 2023 02:34:41 -0800 (PST) Path: ...!news-out.google.com!nntp.google.com!postnews.google.com!google-groups.googlegroups.com!not-for-mail Newsgroups: fr.sci.physique Date: Thu, 23 Nov 2023 02:34:40 -0800 (PST) In-Reply-To: <_TbExXziUtN2F4myK04i0CjjsII@jntp> Injection-Info: google-groups.googlegroups.com; posting-host=2a01:e0a:170:e3f0:1cec:9689:2c85:d454; posting-account=PKzfqAoAAAC4-vQRW_wt6WFB3xnoeWfi NNTP-Posting-Host: 2a01:e0a:170:e3f0:1cec:9689:2c85:d454 References: <4c889034-b408-4498-a880-a388fdc24aa8n@googlegroups.com> <7b21a5dd-a52c-477d-8bdb-be6e5260e267n@googlegroups.com> <_TbExXziUtN2F4myK04i0CjjsII@jntp> User-Agent: G2/1.0 MIME-Version: 1.0 Message-ID: <6b2c30a1-7d09-48d1-a3a5-13e89fa52fa9n@googlegroups.com> Subject: =?UTF-8?Q?Re=3A_=5BRR=5D_=5BRG=5D_Est=2Dil_possible_en_relativit=C3=A9_d=27avoir?= =?UTF-8?Q?_une_acc=C3=A9l=C3=A9ration_qui_ne_soit_pas_la_d=C3=A9riv=C3=A9e_d=27une_vites?= =?UTF-8?Q?se=2E?= From: Richard Verret Injection-Date: Thu, 23 Nov 2023 10:34:41 +0000 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Bytes: 2559 Lines: 15 Le 21/11/2023 =C3=A0 19:52, Richard Verret a =C3=A9crit : > Dans ma recherche je suis arriv=C3=A9 =C3=A0 un espace des vitesses F o= =C3=B9 les =C3=A9l=C3=A9ments sont d=C3=A9finis par y =3D b f avec b =3D a= rgsh v/c =3D argth Vp/c, f =C3=A9tant le vecteur unitaire de la vitesse par= rapport =C3=A0 l=E2=80=99espace de r=C3=A9f=C3=A9rence. Dans un espace perceptible S d=E2=80=99un observateur, un point Mp de vites= se r=C3=A9elle v et de vitesse perceptible Vp, est d=C3=A9fini par l=E2=80= =99angle =CE=B2 par rapport au r=C3=A9f=C3=A9rentiel de cet observateur tel= que: sin =CE=B2 =3D Vp/c, tg =CE=B2 =3D v/c, cos=CE=B2 =3D Vp/v. Le scalai= re b s=E2=80=99=C3=A9crit donc: b =3D argsh tg=CE=B2 =3D argth Sin=CE=B2 qu= i est une identit=C3=A9 math=C3=A9matique. Il suffit de d=C3=A9river par ra= pport =C3=A0 =CE=B2 pour s=E2=80=99en rendre compte. J=E2=80=99ai =C3=A9t= =C3=A9 tr=C3=A8s content d=E2=80=99arriver =C3=A0 cette relation math=C3=A9= matique car elle confirmait les hypoth=C3=A8ses physiques que j=E2=80=99ava= is faites.=20