Path: ...!news.mixmin.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: Re: how
Date: Mon, 15 Apr 2024 15:45:46 -0700
Organization: A noiseless patient Spider
Lines: 52
Message-ID: <uvkamq$hf1v$1@dont-email.me>
References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <uv7609$n6lm$2@i2pn2.org>
 <0i01kKYhCcWwtJURV35AV3Oy16s@jntp>
 <44eaef1b-35be-4b50-900b-52b010ba9aa0@att.net>
 <_g9BcdiKQ1epFrcvM4FSF2rZkN8@jntp>
 <f4890eb5-e8df-4d98-a1ba-98c40f516df5@att.net>
 <HowGC2OIbH3GwJcRQBgR51F0vzM@jntp>
 <29c99292-805f-4f34-a1c8-ce1c7cd82f75@att.net>
 <WUdrtFzAGxMxA0R9q5J6yKSUZZk@jntp> <uvhdlb$3qhdi$1@dont-email.me>
 <yEN9mcjNSFCpZauAmq9PZpqTvbE@jntp> <uvj8dn$9pp1$1@dont-email.me>
 <uvjuoq$etvf$1@dont-email.me> <uvk1pa$fjol$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 16 Apr 2024 00:45:47 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="8bbe6702323a2c8dcfc05821f328ef73";
	logging-data="572479"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/MOLQ5ubF9R2taPxOoEOj90BYXVMxw/4o="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:eSJm0ZdPAE/OOYhizcSqd8R2T3o=
In-Reply-To: <uvk1pa$fjol$1@dont-email.me>
Content-Language: en-US
Bytes: 2869

On 4/15/2024 1:13 PM, Tom Bola wrote:
> Chris M. Thomasson drivels:
> 
>> On 4/15/2024 6:00 AM, Tom Bola wrote:
>>> WM drivels:
>>>
>>>> Le 14/04/2024 à 22:17, Tom Bola a écrit :
>>>>> WM schrieb:
>>>>>
>>>>>> Le 13/04/2024 à 21:16, Jim Burns a écrit :
>>>>>>> On 4/13/2024 8:35 AM, WM wrote:
>>>>>>
>>>>>>>> What elements of {1, 2, 3, ..., ω}*2
>>>>>>>> fall between ω and ω*2?
>>>>>>>> Their distances must be 2.
>>>>>>>
>>>>>>> Why 2 ?
>>>>>>
>>>>>> Doubling of ordinals
>>>>>
>>>>> The smallest ordinals behind all n in IN possible
>>>>> would be the w's in something like
>>>>>
>>>>> {0, 1, 2, 3, ..., w, w+1, w+2, w+3, ... w+w}
>>>>>
>>>>> which, under f(n)=n*2, has the image
>>>>>
>>>>> {0, 2, 4, 6, ..., w*2, w*2+2, w*2+4, w*2+4, ... w*2+w*2}
>>>>
>>>> Right! But ω remains like 6 remains.
>>>
>>> No - w in the domain is related by the function to w*2,
>>> same as every other element in the domain:
>>>
>>> 0, 1, 2, 3, ...,   w,   w+1,   w+2,   w+3, ...     w+w
>>> |  |  |  |  |||    |     |      |      |            |
>>> 0, 2, 4, 6, ..., w*2, w*2+2, w*2+4, w*2+6, ... w*2+w*2
>>>
>>> Anyhow - your "doubling" idea is childish and idiotic bullshit, as always.
>>
>> Ditto!
> 
> ROFL - I haven't got any "doubling" idea for a list of the IN u {w}.

Where was I disagreeing with you?



> 
> Morons like you "double it all"...