Path: ...!weretis.net!feeder9.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail From: Richard Damon <richard@damon-family.org> Newsgroups: sci.math Subject: Re: How many different unit fractions are lessorequal than all unit fractions? (infinitary) Date: Sun, 20 Oct 2024 07:56:05 -0400 Organization: i2pn2 (i2pn.org) Message-ID: <30b58bd38b2264ae8ca180a544cc88ee34c6d8fa@i2pn2.org> References: <vb4rde$22fb4$2@solani.org> <ve6329$19d5$1@news.muc.de> <ve64kl$2m0nm$4@dont-email.me> <ve66f3$19d5$2@news.muc.de> <ve683o$6c2o$1@solani.org> <09d9f0df-b1bb-42a7-af9b-890bfbcfc581@att.net> <b0fa9a1c-8375-4523-a15e-65789688660e@tha.de> <3f63bc22-83b2-4d56-9837-849551170c77@att.net> <50ac7044-f8c1-47d9-947f-9fa6044e1848@tha.de> <68b8be64-7fe8-47e7-a991-7adf14713af5@att.net> <vejmkm$e069$1@solani.org> <eb21591a-a60a-4baf-bdbd-afef2a69c230@att.net> <vejte9$e3ds$1@solani.org> <53460f91-4542-4a92-bc4b-833c2ad61e52@att.net> <ventec$255vi$2@dont-email.me> <venunr$2533b$4@dont-email.me> <29ce40e9-f18a-44d4-84d9-23e587cf9dea@att.net> <veor6u$2asus$1@dont-email.me> <2b6f9104-a927-49ee-9cf0-6ee3f82edc23@att.net> <verkkk$2r6kk$1@dont-email.me> <22f95ff7-c361-4d8a-943c-1df76abb98cc@att.net> <vevpsl$3pi3s$2@dont-email.me> <ed1862ff-3679-4175-bb25-c317be9713b2@att.net> <vf0t7i$3v3cv$5@dont-email.me> <9c55eda1-bb24-44ae-9158-2a3b354170cd@att.net> <vf2ck9$amc3$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 20 Oct 2024 11:56:05 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="2876149"; mail-complaints-to="usenet@i2pn2.org"; posting-account="diqKR1lalukngNWEqoq9/uFtbkm5U+w3w6FQ0yesrXg"; User-Agent: Mozilla Thunderbird In-Reply-To: <vf2ck9$amc3$1@dont-email.me> X-Spam-Checker-Version: SpamAssassin 4.0.0 Content-Language: en-US Bytes: 2588 Lines: 19 On 10/20/24 3:48 AM, WM wrote: > On 20.10.2024 00:54, Jim Burns wrote: >> On 10/19/2024 2:19 PM, WM wrote: > >> A doubled finite is finite. > > If all finites are doubled, then not all results can be in that set. > Either more finites appear, or the results are infinite. >> >> No k exists such that >> 2⋅k is a finite and 2⋅k+2 > 2⋅k is not a finite. > > All doubled numbers result in larger numbers. That cannot be avoided. > > Regards, WM But since there isn't a "largest" number, we can find that in the set. It doesn't work for finite sets, but does for infinite sets, something that seems to blow your mind to smithereens.