Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM Newsgroups: sci.math Subject: Re: How many different unit fractions are lessorequal than all unit fractions? (infinitary) Date: Fri, 25 Oct 2024 18:57:07 +0200 Organization: A noiseless patient Spider Lines: 36 Message-ID: References: <30b58bd38b2264ae8ca180a544cc88ee34c6d8fa@i2pn2.org> <45df31bad2d3e517cb48ab1f0eb7ff6f80999bf3@i2pn2.org> <5e5ccee7-0c98-4701-aeaa-4950a3ce2938@att.net> <08a00c75-bf8d-4f9c-816a-83b8517ca04e@att.net> <062a0fa5-9a15-4649-8095-22c877af5ebf@att.net> <276fc9df-619b-4a10-b414-a04a74aa7378@att.net> <88e6a631-417a-4dd0-9443-a57116dcbd28@att.net> <7a1e34df-ffee-4d30-ae8c-2af5bcb1d932@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 25 Oct 2024 18:57:08 +0200 (CEST) Injection-Info: dont-email.me; posting-host="8d868b5d34883ac27de334c6e2200e6f"; logging-data="3434214"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX198T6pAtjKgyivfJ9EfShi6614ejhUMj/E=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:8oIRCZI5Fajc38LGq/QJtg9QQI4= Content-Language: en-US In-Reply-To: <7a1e34df-ffee-4d30-ae8c-2af5bcb1d932@att.net> Bytes: 2944 On 25.10.2024 16:53, Jim Burns wrote: > On 10/25/2024 7:42 AM, WM wrote: >> The whole interval (0, ω) is not finite, >> let alone the doubled interval. > > ⟦0,ω⦆ is the set of finite ordinals. > That is the definition of finite ordinal. > That is the definition of ω, > the first ordinal after all finite ordinals. Correct so far. > > γ before ω: γ is finite. > γ ∈ ⟦0,ω⦆ ⇒ > ∀β ∈ ⦅0,γ⟧: ∃α: α+1=β > > ω before ξ: ξ is not finite. > ω ∈ ⦅0,ξ⟧ ⇒ > ¬∀β ∈ ⦅0,ξ⟧: ∃α: α+1=β > > (Keep in mind that ¬∃α: α+1=ω ) That is wrong in complete infinity. > A better question is: > why do you (WM) support it? I support it in order to show that your infinity is inconsistent. Example: Almost all unit fractions cannot be discerned by definable real numbers. If they are existing, they are indiscernible, i.e. dark. Regards, WM > >