Path: not-for-mail From: hertz778@gmail.com (rhertz) Newsgroups: sci.physics.relativity Subject: Re: Weakness in the results of the three tests of GR shown in rhe lasr century,. Date: Mon, 28 Oct 2024 16:34:48 +0000 Organization: novaBBS Message-Id: <6c4e2acbcecd3dcc0f34bd1be69fea3e@www.novabbs.com> References: <52e47bd51177fb5ca4e51c4c255be1a6@www.novabbs.com> <26ec5dc08548f7ca167c178333b2009d@www.novabbs.com> <9ee53574f9a20a5a9d9ed159d5c474b3@www.novabbs.com> <02a3ec2d6e0227716a14f854e64b8a27@www.novabbs.com> <83224561f48101ccdde65215817f0508@www.novabbs.com> Mime-Version: 1.0 Content-Type: multipart/mixed;boundary="------------671fbd27412890.75586202" Injection-Info: i2pn2.org; logging-data="4073217"; mail-complaints-to="usenet@i2pn2.org"; posting-account="OjDMvaaXMeeN/7kNOPQl+dWI+zbnIp3mGAHMVhZ2e/A"; User-Agent: Rocksolid Light X-Rslight-Posting-User: 26080b4f8b9f153eb24ebbc1b47c4c36ee247939 X-Spam-Checker-Version: SpamAssassin 4.0.0 X-Rslight-Site: $2y$10$kKkgJecYn02tPGGLucTsieSFKDkk2R5tK46SP3Vkjz1z7X5k4ylxq This is a multi-part message in MIME format. --------------671fbd27412890.75586202 Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: 7bit On Mon, 28 Oct 2024 13:19:34 +0000, ProkaryoticCaspaseHomolog wrote: > On Mon, 28 Oct 2024 8:13:09 +0000, ProkaryoticCaspaseHomolog wrote: > >> I would contend that Le Verrier Newcomb etc., confronted with a >> discrepancy between theoretical and observed precessions, knew >> better than to employ a naive Gauss ring computation. > > Note: In my "naive" Gauss ring simulation using circular, uniformly > weighted rings, the line representing accumulated precession over > time is completely straight. However, in a computation using > eccentric, weighted rings, the line is slightly curved. Over the > course of thousands of years, as Mercury's line of apsides works > its way around, the rate of precession estimated using a Gauss ring > approximation with eccentric, weighted rings will vary. What do you think about this approximation? It's a rather long article: Newtonian Precession of Mercury’s Perihelion https://www.mathpages.com/home/kmath280/kmath280.htm --------------671fbd27412890.75586202 Content-Type: image/png; name=Torus.png Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename=Torus.png iVBORw0KGgoAAAANSUhEUgAAAmMAAAH5CAMAAAD6A8n3AAAAAXNSR0ICQMB9 xQAAAgFQTFRFAAAAAAAcHAAAAAAWAAAiExMuAAAwABw3AABLHDccADAwACIi ACJLACJ2AEtLAEt2AEtoAEuFAEujIgAALhMTMAAANxwAIwAAIgAiIgBLMDAA IiIAIiIiPyY/IiJLIiJPIiJ2PUwiIkw9IktLIkujInZ2InaFInajInapInbQ SwAASwAiSwBLSyIATD0ASyIiTyIiTDVdXTVMSyJ2SyJgS0sAS0siXUw1S0tL UFBQS0t2Q1h5S0ujS2hLS3Z2RGlpXn+XS3ajS3bQS6OjS6PQS6P/diIAYCIA diIidiJLdksAdksieVhDdkt2aURpdnYiYGAidnZLa3p6amqGdnajdnbQdoVL eISQdqN2dql2dqPQdqP/dtCjdtDQdtD/hXYil39ehmpqkHiEhHiQg5ychoaG nJyDnJCQmpqug4+kmqy9m6Wlo0sAo0sio0tLo3YiqXYio3Z2rpqapI+DpZul o6NLvayapaWbo6Ojo6PQr7fHuLjAo6P/o9B2uMC4r8DAusfNo9D/o/+jo//Q o///0HYi0HZL0HZ20KNLwLi4x7ev0KOj0NB2wMCvw8/a2s/D0NXKwcHPz8HB ytXQ09fg0P+j0P/Q0P//3OTn/6NL/6N2/9B2/9Cj/9DQ4NfT//+j///Q5+Tc +vr4+Pr68/Pw8PPz4Ofg5+Dg9PLy6u3n////FbfYNgAAAAlwSFlzAAAOxAAA DsQBlSsOGwAAABl0RVh0U29mdHdhcmUATWljcm9zb2Z0IE9mZmljZX/tNXEA AE/QSURBVHja7X2LnyTXVV4lGSVDgvyo2SRybJASLMs9FvGCg2JixdlI7omM VzLGEjGR1AwGEzOUVpaNJhBwMNqplRPITAJoZ0tDmNnVroD6K1P3vO65t6q6 69E9My2d8/vtdk911bmvr+6j6jvfTUozs9VaYlVgZhgzM4yZmRnGzAxjZoYx MzPDmJlhzOxDj7HT7QQtPdtJ551ebMzg82xnEhzPNw/0n6fb0wXpsqPFdro9 6V+sospPlCe0LO3tq9FPP1uY6tlOklRVlifJw8f6QNcqmi6svSIuxYCaWNB6 J1tJY1Uhxk4eOy7zqnTFx3eSeUkXCTqvaiBo+Dx0XkF2Qf2woy71l0wG1UOe jMfGMv3MB+G0zBy6TrepXoo+qZ5+bta79rJkOMaaW+/0yYPm/oAw9nIJGDt7 sakfO336wvqxGwd9+jGV0ab+58ZBl/TCW/OZpfRjnUFy+sVtqP+z556iDq2L nX31YGE/ViteSz/mSjysHyvacuznYzmc0oQxlZtzxpjr4HtgLKy2GBvFYqzE p0AxzwFjJ48wxp7OoWJOHnu9D8aeP+6EsaB4zRiLG7ZH6+U9MFbATMBNCCaY y2qeNnX/VzksNr615aYMkBU5xbXDmwl0vjijAIy5Sx4+rv7fvOkmFzy+nmxt /vCZytGrOzD3qFKrjlf/pzCcn2xtzPIkvQVlyNwMsaqlHPpm52/KNQcpuwxU maI8Y0aLjW9Ufl1hKE85ec1wulm7zOVZp0f5xqwmVcr55lvbqmzYWD/ccofy za/TBVPJFP2FTrGwkCq5leJwOVxOk4QOnT59Ch1ZNs2pcqDSv4EVmUzOdqBE Dx+f7Xx0J/kXLruubFKtmDuoUrzsne0ndsB35Q+LR+mmWQoDKYyZUrVYYsgQ 9xJYavcD5aj6XVrPJ+cqNWlGWR1jVZrV1ODsuRn3RtC1ZSncEkXl5mQrhVpT p7garX6blPmETp3SP1cbE3TuBmQ3CszQ0cbsZGsKt5a70N3JcObbB9XkkO+T HPoxV7WpG+75fneuq/sdMrEDCMY876QA1hJawedpEy+sPgHn8WW19DDf0gs4 kLoTqGxc7ZXrHEGFGaNM0V/oFAsLqZLbdxApqXT3kJTqx5yP8vQLcJcUrigP /zhBGFCZ4dhtBA50TDAAUrVyb1VlrqDL3DWbB1gj1I+5Gnj3k9ii0Fy6aqm1 cgIZltpdQc11tuPKjq2nkuvXj8HXApeZpR8+KyRPsJOExoK+R24MyH0GNehu PagQgL1rG5fj6vPtA+XN/VCdhV1zhkh0uT97seTMS5tjReSQHFRjnvquvzqb 8wyfCJeca7RyrTAGtRtfFqUn+ZYa3yQMYdlUccE1Z4wyRX+hUyqsS5XdcnGk yl1SGmPuhHyC5Umgg8NKT8tStQ96do5xEurnOFKlBXb+EyisrxGaOcFtW69a dwg6DnLoS13AWDQtVesFyQ3AmL8ADlW32+0dwlhBGFM+sbIffofmri59WCe5 0rn2ebq6FV6UrhX6f8gl3nvUtMWz21PX2WWM3BBjaTyVgEShn2jHWF7HWHxZ lJ7kO8aYWrxp15wxzhS5QqcFjcoTcasxpqtIMFZmm289eYDl8S3Kl4QYcxm5 NVPVKjOwHPte/ItvecYYpJulTVXrDmHh4SRZjVSDFzRXDWNBC/bEmJ8eukPY zXA/ht2OnkHijZ1yHqhjL3kIfHdWzWBelhnuFlYA9GMu1RyHizeOsxQ7u1x1 j1IRvgj0tcBZ0Px+LC1r/Vh0WZSe5LvWj03j4grWVKZ8NtGpKywgm9wG/Rgn FWDsZOtTqVSyYIz8Rhg73X5C5vsuJTiDqlT1Y4/MAoxx9huqFvuxVO4ZQdLU DztRP8Yt2AVjlEMug5ufvkR36Ml/2XGTS2wfB3PEnT8lh4ngDGvtjWPMqesi YK78k/+x+usxmgtU6+yTTzDGYCSnvvlnXq5cPFHVyKfVaHjzRZk0uJLjnM7l pCymbp4h9Q0dUnryMmGMwFLQv8wNOZUzzHd4WS09zneJt4dgFMuG8JkKbDlj lCn+C5xSYXFcQrcaY5KUDNfVRKz6lSYkeDe8jR0SuXfdSzV+VYMKD81TXa14 62GVEsZSalPnryoedUpu6gMP3N2nqlosceK7Viz1O9vY9vDXjQOFMd+Crevv pPQrnGQKq4M0xykVd74wg66O/eTPwiTaTTbhtFKdUub0NeNF6AR+ppnc1C+V z7625VZ/lZtXtmlFidXE8+3y5PPitlozwVlZAmsNWbjQV5cNnLZgnquM/pjX RQ5H6Mf9/mXXWWy51VCSxpf9MEhv5vMNxcFTXJ6xbHQ//oL7SglQboIPLAQW 1tcW/o/F4VpPcQ5H/anLfYVPag73wwSrXLnf/Lqb82Me3XTdV6tf6E2ppXi1 C1mlJSic8fAvpf5TVW1GGZKnE1jq6v+PuGWo5AhbzycHk8fJgn7MrLudwyOz jhY+dr6cZhhbb4zdml2SjBjGlgyxJLkUICuSge9yDWNmHywzjJkZxswMY2Zm nTE2iHAK1kapLC5kZiwPOGvFgadOOq+FfxdXf0i9gObSjQUT1VB3+u8qrP4k vlaI0yd/PfHvZZcBDo2xwYTTVisuZPVFBM/m4sQPHU638UDRmxQaU4E71shF YixPFnLS3NN9fG8UEwKT8RjrRzjtRJac24919NDJIvJqez/WcCcT6AY8ZurV j0GGnl55P7bgiWy+CGPwBhxethQRptrA0aUdE4+G7hjrWr3tGOvdQD1S6YUx PGsOkXR5GMvSlWNsQRzIQow5shi90NtKu2CsUyUgxtoIp+Gh6j/3xm/j17b4 dZbQPCGMJuPLMveSb8rIJS6P5726F2dAMGX+Kb8vO93eeOVpLpOQSj15tCCv QEIN+K2Ki5oKxoABWrmGd+JpVMvMhUF+zcsB5/Sd7ce3N2Z0PydQiMe3BR1U okZKLdKtkNqVQN6AaVqdyyxdTyBVr3vpcCbvV8HnR3fwlSWTb4UOOw2YwJOQ CKxcc2qcUg4Evym9gHaVD2XMkskNogVNS9WPUasA2RdYbfqRL+TjZCvpMPon fsioE05PmbRJhxxjIcMmRxR7mqcjC9C4g+V25AGHMaQawAtaIFIi1wFoSsI/ ZZZlNtUM0Ryb2ZNHE2ChMAk14OxIBpHgiS6QAQpY4C5dMFYwrwde2L99oDmn jh5+gMFVePSdbT2zJPIE051iJi4QJKTfco5eIvptWpaaQMokDCIwV+01DX0C /UJYGsRrDUi3SEX+ik5euZZK55RyonlUQypWPpeRWo5bfUqVB61CZF/XzipI Q/LRuR9rI5zGh2iiKxjzNE8dTEWkRmaYCYEWCEhI7fRUON+tEK0R8xMSRYUQ k3PcZMRvpQwywVPyznRunm/lKnwRb0HHUKrqPOCcYvmi7OpJyBZRtmNKrWse aeiC2Dnvzgg3aUC8Yj/YReFhYItrn5p8izSygHRbqKDYXGEsrHRJiXh6jiIk JMypGr+xvSBNPAatQgSmx4MAO8rHYIyFrMjg0MkWRgFO9ICDGPNLESgqN4Ei 0EKjTZVjeZCALMsSxzU1saiRRwVjEb81V+fr+RjekxOZC3uMCb6rnBXTMuCc KoxN67MRKlEjpZZwxn3x2fOvP3z8xnEzxshPjLHApybfaso1lbFoJC6WUaVL SjnegjD7zCRKwIf+MMamQatQhsJ3o3k6dymwEGMhK1IfOn3yre008Mw0z2rc fHVHGpByT6TsM42xic5bngjZkucCCDImlcbkUd+PhfxWPp9+8v3YI0D3e3Ma YOzs+dt+rnq6nd44KAPOqcLYpFaVfjxroNQGTeEokyePvPJS2Ygx9lHrx7RP Tb7VdFhmAm8eNGGsodIlcseFlj1TcuWT/4xCxmSs1K3CoC90YHaugmo6YqyF cBodcoMwEisn77rcKJqnmxmc7fBtRa1eYBwNEGiF9wrTH+fh14R/ekosy9dm fOMKqTQij+K4iCxNzW8VLioSOwk7NG5xlBGDsMwmnA8PdM05ZYzJaSHGsERN lFpXC3rB++Xql5+eSWgXsnRVuBfP3TTGAp+afCu8Vk+6JSpyQARWrgVjlFKO SwoYjLHyoYwTqBE15/c3VuHHyknwcJHywUjogrFmwulpeOgdF2YIf9Lcy9M8 P76DXFnia38EJskFLh4dgfYfC3Myx7le5UHxXYll+donpReQlWZAHn0d2K5I QtX81hmfz8ROtTTlJXnpZT14YoOHiVXsOaeexkvZxa8Ze4MSfbyJUnuQJUmi oidlfMJAT2DpCoGUqcU453eHn4h9lqUn39bosLJivKmJwMfetVQ6pUTtA8+b sfKhYMWnZOmaa1IutcpPyIlutfXjiIrcRdJgFe8rF+iyjLX+BMElEfk4smrO GfCcbfF5F2pFewx/u3CGt7d7v7v5MGBsSXzkfPGTIJylXG5u6tznzRIg1XrC Vv+H5yvAGPfyq4JYPxJqlZvze2uKzzouMzc1W/DMdI48y2Azbo/Zqs0wZmYY MzOMmZn1wVigTSdvdnieiDoIOK/dvLlwcrhwjbKAitK6PG0nyHR67NxNarXO S8KCw9Oj+Uvb4I1l08+daTIxGae1Sgct5flB9oCWE4R0WU8lYROpynfSCxm9 voBE6QE6PEku0oVaiRL4PtDO2qRp28mk3diamX753gqxeu25txwONSePfW9u 1UrGm3nAPQi0MXG1tUrPdgau5EcRc1sFYDv3Y2/TGwR4LofvfKDf+X/H2E4L H9h1vRt69WPzyaRditzlOWNjH+TkY+DoG4392I2Dcf1YI8g69WO3Zr36sYA2 XKvLHg/3io5yonPGytKTJ6i2ZGxDJY88PX+MzSeTdsFYx2w146NQGnet558z xlB/qzPGwkzFddmn0fJ+GJPXX9PaPY9MPkhaMIYhFjo/9PpPaadufOuRgOSq BEtzfKtH/NkJCZwqRic3VUbszikNGxGZVHTdmOl5yuqnokULkjOpovaS9iop ngLHU7FQRW9Vc3ibMBZLxCIbNyMJmzQTHrAismoCLXGAlfAq0ZDyQG3HvQRm vR2u0jysTni/eLsm4+ufhUtR36L3zY7V6ni9hRf4LfA17RRfVnK+1WV1vdk5 ArCNGGMiaowxzxYNMZZNo16PODbwDL5ABuzZ1x7RJFctWOoIEyTOip3h75cR o5PqaAozQqJuShdRhJxa6t5Q8wy5ryK06vgEZ3+gBU+J7oOKpzmpU2kWKjn1 HN4mjNUkYknf6wDpqJRx2IlCySZ6Ai1xgJXwqmthzzsmjUAWpoPZOVUpCbSG 1dko40u0CSkq5RnecANlAf5DgV/hxbhsJ8SbUZfV9WZ792NEeYwwBi8WlD4q Y4xEr8JOH8joVCHA7VP8SmBnpLqPxYohxd7TP4oZnYInIMwiddNjLOTUSk88 Ee6rF1p97Lj8qz/R1F4J7/KEwJBZozCmmKr1sbJJIta1NbFyiAesT1EEWqSh auFV7scCTqjCGFcpObzpqxOrsibjWzDDSxVVqOkAl4I0U1nYU0ixBd6l+rIG vdn+Y2XqiYJir824WsP5mCMfRRirIF94jEEVSseBvvXANiXKC+R2AnT6kNEp 36lv4Re5IcbUIhiZnsx9FaFVd84bx8HMEbQxWfF0PsYUU7UZY7FErAtqIIzR VFafogi0SEPVwqsBxrI6xrhK2WGhAk5mTTK+Oeu/q6K2YKyoY6x2WV1vtifG vNa5xlg+5TkZFVqKPo1XCAWNFHKDT0otdM6kchFmpAAcLOlbL9UYnaofmyrq ZoSxiZ5GnzHGqnS9pmv+8J+9HPbq2I+R4ulcjGmmaks/FkrEEtta84DVKZpA C5WQauHVsB9jPpfHGBdNRwN4nn+DjG/BkFBFbevHUDw27Meiy+p6s70xhmN3 MPsAZt8N4MpjIkLlpcevas5PUyzJUUYcVe9bC5amev3FTNGQ0cmFgZscqZs0 p/FkUs9lZaYnc1+9pivq0CpqL97YgaCrxhjrrR4rDm99GdYgEevYuDmq10vG lUJuGRJoiYaqhVdxPokYY/HXnFDgqpKrFB3e9tXp1Jpv12V8sczPBEXFeR1R nmnuhfEjIK/uotmc9DPkO7ysQW+2M8kq4cmUozx+BmiRaqXEVEzayYK6Sxoq AXxbfLckyReTjV9m7VTmqHrfn/WCpc4RzL1o3SOcW8Xo1AsjLRUQkEk9l5U5 pcx99ZquWarWtqXQPHOvGxuyUFFv9VhxeFMhsrPmaZNErFv7uTcjT+HqlITT ARdqScsEWuYAe+FVl+PPRFRkyB5XpVQpOFT6r9WVX2mS8ZWoSikq5Jkpz7xl COWg8vo49KQo1juLLvtKTW92jgBs25xfWUemI84M3u3/EAzn730uLKal2dpa HWNdmY60J1L/dxgUmdCDnDpEKsDsEmOsa7s/N/gpftEkPtRu2YWK3ZhdHMbM zAxjZoYxM8OYmdmyMTZc8tM/RlTCJN4WkVn04/J5JJXF8rK0EZHe8WiMZWrL wfnWwK31wjP+6p6hoQOosVKXIce4poTLWmVOU262KN3FW3d3xNh4PVim0Ubk ykXET82+nUfo7CQvS4IB+TIfqOWLE65za5uqMx8f6rmAGhswmcML46Qz4ns8 uThLHWmdizDWRQ924SOtef3YnIvlNllA6OwiL3vj61B1DWzOgQq0Lt8Lu5+m RmiqziXss9S1H1t0HSuQdamWkYG9ffRgs0XjzzyMzbmYL1tE6OwiL3vjJrzb vLWw/+9qrBY015rYo5cdY9TxduFWj3wGPl8Pll+2OcXQt7Z5W0QRSCXlUqL/ JMmzgjEgVyoNvFapUnVZK6Gzo7ws9cfwPvyWFKNKPEMOonudSpzSOo+VIBAc lnxHx1GYlQuDLz8x/Rylf9zrzuoSqk5oXdpRkx2Fpx5wViMF2J7UWN0ExELJ ZdriMcbNCz2B039RSri3IQv0CgcZhaSE68V7h/ZjzXqwTOxExVDk1SiBVFIu PYCJkrvi9S3empXIlX7P4jap0uCyRkJnV3lZ6seQo+nkdKEY7vXvFKmxfttm zwkNOtjosFdxDWmvhcyehW4rnUnBG726vYixOmEGBXlMxVF8KmT11VgBtic1 Vtely7tcGmJMmhd+OnlZK+GCUDJO6qT6SCpWxHtHYqymB0vETvSO9ColkMrK pdj4E79lMZErb+4Ib79skyqNL2sgdHaUlxWMOVrKrVmgWMpyn5pDFfFYuRbU Yc+9Do8XQd8AdFvZDxxQlzp6jdflq/BF8zVPxgpOpazWFGD7UWMPdF0Kmy6L Meab10H2xkGghMuigNNY8DUQ710CxtSMiImdFM9RBgKpIrBXUDcRzMeKCmO+ vC1SpbXLGgidXeVlBWNVt/WNWaBYyinFGIum6tHhGsaYgsoYE7qtnxRV9Xer Gr7enQUYk825FcbUqXnqCxoSZ/tQY4O6nIOxVM0YQW1ZNZrCWCT4mg1/HDRf D9azHTO8zQKBVFYuRc5oGmEsF56yxlhNqjRtwVgUStZJXpYwhqqyWrGUeaS1 fmzaiLHtaTPG4iWN0G09xhwDsLrujeOwH9ue1jHmT60RfxswtpgaG1zegrFq 9q6aN3NCuYESrsJYTfA1Hwqy+XqwROwkxVDgoCqBVK37CrzJXGQlkVgp4q+k hlrWpEqDy1oInR3lZWceY/QzatgSJRZOYU5pA49VQ4AOS76j44UX4yS6rR9J Trf/XXXeP3mmDDVsHUfYta/GmD6VxFUjBdh+1NhjXZc4hZvEz5GziW5eZJhq JVzG2MRXH42Vn14YT7sIY816sCURO9/8FC2faA01UbtcoAgr8j0f3/ZMSV5n weYNHLRY1qRK9WUthM6O8rKUX5xI3hLl1NPtn8E1bkZSq1/GOb/isUKsWlmj t0q+vxceL7TiK4wguYo0zGgJIBq234NywJU+geBUyurtWAG2JzW2VHXpfvmY XBoq4frmlcgCVsLFImPrsgQwSV5/fvj+1mvwvnKc9GenN2TYYZqtxgxjrue4 FDvQG8YuEGJjXnDH+2OYGcbMDGNmZoYxM8OYmWFMWQMfpsZicco4gyxXCiva BtJxe7+x5TcJ81TdNCFpIC+n2DwI65FlQcKyhxQtfpxFQkbdCtIx/aiyFwiu ========== REMAINDER OF ARTICLE TRUNCATED ==========