Deutsch English Français Italiano |
<0ea781d0d3fe1c2cb4e900898f655d12de85a403@i2pn2.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!i2pn.org!i2pn2.org!.POSTED!not-for-mail From: Richard Damon <richard@damon-family.org> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Tue, 17 Dec 2024 07:34:07 -0500 Organization: i2pn2 (i2pn.org) Message-ID: <0ea781d0d3fe1c2cb4e900898f655d12de85a403@i2pn2.org> References: <vg7cp8$9jka$1@dont-email.me> <vj6vhh$elqh$2@dont-email.me> <33512b63716ac263c16b7d64cd1d77578c8aea9d@i2pn2.org> <vj9s4i$11a3p$1@dont-email.me> <vjam6d$1700v$1@dont-email.me> <vjc65g$1i9vk$3@dont-email.me> <vjf7kl$2s7e5$1@dont-email.me> <vjfmq3$2upa9$3@dont-email.me> <c6b624cb0b1b55d54aab969ee5b4e283ec7be3cd@i2pn2.org> <vjhp8b$3gjbv$1@dont-email.me> <dc9e7638be92c4d158f238f8c042c8559cd46521@i2pn2.org> <vjjg6p$3tvsg$1@dont-email.me> <c31edc62508876748c8cf69f93ab80c0a7fd84ac@i2pn2.org> <vjka3b$1tms$3@dont-email.me> <e11a34c507a23732d83e3d0fcde7b609cdaf3ade@i2pn2.org> <vjmse3$k2go$2@dont-email.me> <069069bf23698c157ddfd9b62b9b2f632b484c40@i2pn2.org> <vjooeq$11n0g$2@dont-email.me> <c611fdd5710ea4e05d421327898dfd48277b66d6@i2pn2.org> <vjpbo0$15bha$2@dont-email.me> <7aa4daa380966c031798568433c3a7e079cd29cf@i2pn2.org> <vjplmh$177tn$2@dont-email.me> <e08128aa5aa13493ccc0f9a4e0473fdc1515cb24@i2pn2.org> <vjreth$1lvej$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 17 Dec 2024 12:34:07 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="3295327"; mail-complaints-to="usenet@i2pn2.org"; posting-account="diqKR1lalukngNWEqoq9/uFtbkm5U+w3w6FQ0yesrXg"; User-Agent: Mozilla Thunderbird In-Reply-To: <vjreth$1lvej$1@dont-email.me> X-Spam-Checker-Version: SpamAssassin 4.0.0 Content-Language: en-US Bytes: 3226 Lines: 36 On 12/17/24 4:05 AM, WM wrote: > On 16.12.2024 18:25, joes wrote: >> Am Mon, 16 Dec 2024 17:49:20 +0100 schrieb WM: >>> On 16.12.2024 16:40, joes wrote: >>>> Am Mon, 16 Dec 2024 14:59:27 +0100 schrieb WM: >>>>> On 16.12.2024 12:55, joes wrote: >>>>>> Am Mon, 16 Dec 2024 09:30:18 +0100 schrieb WM: >>>>> >>>>>>> All intervals do it because there is no n outside of all intervals >>>>>>> [1, n]. My proof applies all intervals. >>>>>> It does not. It applies to every single finite „interval”, >>>>> What element is not covered by all intervals that I use? >>>>>> but not to the whole N. >>>> You do not cover N, only finite parts. >>> What do I miss to cover? >> Inf.many numbers for every n. > > But Cantor using every n does not miss to cover anything? > > > N is infinite. > > Every element is the last element of a FISON [1, n]. ℕ is the set of all > FISONs. I use all FISONs. ∀n ∈ ℕ: f([1, n]) =< 1/10. > Ever heard of the effect of the universal quantifier? > > Regards, WM > > Regards, WM > But your logic can't deal with ALL Fisons. Note, the mapping isn't in your [1, n] but in N. Your logic that if it holds for all FISONs, it holds for N, is what shows that 0 == 1, so we see that logic is broken when it is applied to truely infinite things.