Deutsch   English   Français   Italiano  
<0ea781d0d3fe1c2cb4e900898f655d12de85a403@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!i2pn.org!i2pn2.org!.POSTED!not-for-mail
From: Richard Damon <richard@damon-family.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Tue, 17 Dec 2024 07:34:07 -0500
Organization: i2pn2 (i2pn.org)
Message-ID: <0ea781d0d3fe1c2cb4e900898f655d12de85a403@i2pn2.org>
References: <vg7cp8$9jka$1@dont-email.me> <vj6vhh$elqh$2@dont-email.me>
 <33512b63716ac263c16b7d64cd1d77578c8aea9d@i2pn2.org>
 <vj9s4i$11a3p$1@dont-email.me> <vjam6d$1700v$1@dont-email.me>
 <vjc65g$1i9vk$3@dont-email.me> <vjf7kl$2s7e5$1@dont-email.me>
 <vjfmq3$2upa9$3@dont-email.me>
 <c6b624cb0b1b55d54aab969ee5b4e283ec7be3cd@i2pn2.org>
 <vjhp8b$3gjbv$1@dont-email.me>
 <dc9e7638be92c4d158f238f8c042c8559cd46521@i2pn2.org>
 <vjjg6p$3tvsg$1@dont-email.me>
 <c31edc62508876748c8cf69f93ab80c0a7fd84ac@i2pn2.org>
 <vjka3b$1tms$3@dont-email.me>
 <e11a34c507a23732d83e3d0fcde7b609cdaf3ade@i2pn2.org>
 <vjmse3$k2go$2@dont-email.me>
 <069069bf23698c157ddfd9b62b9b2f632b484c40@i2pn2.org>
 <vjooeq$11n0g$2@dont-email.me>
 <c611fdd5710ea4e05d421327898dfd48277b66d6@i2pn2.org>
 <vjpbo0$15bha$2@dont-email.me>
 <7aa4daa380966c031798568433c3a7e079cd29cf@i2pn2.org>
 <vjplmh$177tn$2@dont-email.me>
 <e08128aa5aa13493ccc0f9a4e0473fdc1515cb24@i2pn2.org>
 <vjreth$1lvej$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 17 Dec 2024 12:34:07 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="3295327"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="diqKR1lalukngNWEqoq9/uFtbkm5U+w3w6FQ0yesrXg";
User-Agent: Mozilla Thunderbird
In-Reply-To: <vjreth$1lvej$1@dont-email.me>
X-Spam-Checker-Version: SpamAssassin 4.0.0
Content-Language: en-US
Bytes: 3226
Lines: 36

On 12/17/24 4:05 AM, WM wrote:
> On 16.12.2024 18:25, joes wrote:
>> Am Mon, 16 Dec 2024 17:49:20 +0100 schrieb WM:
>>> On 16.12.2024 16:40, joes wrote:
>>>> Am Mon, 16 Dec 2024 14:59:27 +0100 schrieb WM:
>>>>> On 16.12.2024 12:55, joes wrote:
>>>>>> Am Mon, 16 Dec 2024 09:30:18 +0100 schrieb WM:
>>>>>
>>>>>>> All intervals do it because there is no n outside of all intervals
>>>>>>> [1, n]. My proof applies all intervals.
>>>>>> It does not. It applies to every single finite „interval”,
>>>>> What element is not covered by all intervals that I use?
>>>>>> but not to the whole N.
>>>> You do not cover N, only finite parts.
>>> What do I miss to cover?
>> Inf.many numbers for every n.
> 
> But Cantor using every n does not miss to cover anything?
> 
>  > N is infinite.
> 
> Every element is the last element of a FISON [1, n]. ℕ is the set of all 
> FISONs. I use all FISONs. ∀n ∈ ℕ: f([1, n]) =< 1/10.
> Ever heard of the effect of the universal quantifier?
> 
> Regards, WM
> 
> Regards, WM
> 

But your logic can't deal with ALL Fisons.

Note, the mapping isn't in your [1, n] but in N.

Your logic that if it holds for all FISONs, it holds for N, is what 
shows that 0 == 1, so we see that logic is broken when it is applied to 
truely infinite things.