| Deutsch English Français Italiano |
|
<1026v3c$k4c2$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: sobriquet <dohduhdah@yahoo.com> Newsgroups: sci.math Subject: Re: Compactified Minkowski? Date: Mon, 9 Jun 2025 17:37:16 +0200 Organization: A noiseless patient Spider Lines: 17 Message-ID: <1026v3c$k4c2$1@dont-email.me> References: <1026h4s$dki6$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Mon, 09 Jun 2025 17:37:17 +0200 (CEST) Injection-Info: dont-email.me; posting-host="fe18b1cfecb26bbff083417060f9d931"; logging-data="659842"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19DFn4Q/CCdob/TBDz3HTUkXQj6x0LfZdo=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:HvlmE/swGTomoKa3mzNCF/yHT84= In-Reply-To: <1026h4s$dki6$1@dont-email.me> Content-Language: nl, en-US Op 09/06/2025 om 13:39 schreef Julio Di Egidio: > I am trying to compactify Minkowski space, but all I manage > to get is kinds of clovers or squares, while what I'm after > is circles (i.e. the locus of points whose *proper* distance > from the origin is constant). > > See <https://www.desmos.com/calculator/b2bl9jiwo8> > > Note that I would like to keep it in terms of (y,x) coords, > as that naturally maps to the (t,x) of space-time. > > Can anyone suggest scaling formulas (or fix the diagram)? > > -Julio https://en.wikipedia.org/wiki/Motor_variable#Compactification