Deutsch   English   Français   Italiano  
<1026v3c$k4c2$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: sobriquet <dohduhdah@yahoo.com>
Newsgroups: sci.math
Subject: Re: Compactified Minkowski?
Date: Mon, 9 Jun 2025 17:37:16 +0200
Organization: A noiseless patient Spider
Lines: 17
Message-ID: <1026v3c$k4c2$1@dont-email.me>
References: <1026h4s$dki6$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Mon, 09 Jun 2025 17:37:17 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="fe18b1cfecb26bbff083417060f9d931";
	logging-data="659842"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19DFn4Q/CCdob/TBDz3HTUkXQj6x0LfZdo="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:HvlmE/swGTomoKa3mzNCF/yHT84=
In-Reply-To: <1026h4s$dki6$1@dont-email.me>
Content-Language: nl, en-US

Op 09/06/2025 om 13:39 schreef Julio Di Egidio:
> I am trying to compactify Minkowski space, but all I manage
> to get is kinds of clovers or squares, while what I'm after
> is circles (i.e. the locus of points whose *proper* distance
> from the origin is constant).
> 
> See <https://www.desmos.com/calculator/b2bl9jiwo8>
> 
> Note that I would like to keep it in terms of (y,x) coords,
> as that naturally maps to the (t,x) of space-time.
> 
> Can anyone suggest scaling formulas (or fix the diagram)?
> 
> -Julio


https://en.wikipedia.org/wiki/Motor_variable#Compactification