| Deutsch English Français Italiano |
|
<10272b5$re5o$1@artemis.inf.ed.ac.uk> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!feeder3.eternal-september.org!nntp-feed.chiark.greenend.org.uk!ewrotcd!usenet.inf.ed.ac.uk!.POSTED!not-for-mail From: richard@cogsci.ed.ac.uk (Richard Tobin) Newsgroups: rec.puzzles Subject: Re: Add the numbers in a 9x9 multiplication Table Date: Mon, 9 Jun 2025 16:32:37 -0000 (UTC) Organization: Language Technology Group, University of Edinburgh Message-ID: <10272b5$re5o$1@artemis.inf.ed.ac.uk> References: <0b09b939cdbbe465809a7ec27e30912a@www.novabbs.com> <101tbqu$1rh7t$1@dont-email.me> <101v19u$2bho4$1@dont-email.me> <1026gbt$gsd0$1@dont-email.me> Injection-Date: Mon, 9 Jun 2025 16:32:37 -0000 (UTC) Injection-Info: artemis.inf.ed.ac.uk; logging-data="899256"; mail-complaints-to="" X-Newsreader: trn 4.0-test76 (Apr 2, 2001) Originator: richard@cogsci.ed.ac.uk (Richard Tobin) In article <1026gbt$gsd0$1@dont-email.me>, David Entwistle <qnivq.ragjvfgyr@ogvagrearg.pbz> wrote: >Given the sequence 0, 1, 9, 36, 100, 225, 441... it is possible to >calculate the polynomial expression for the sum of the entries in a >multiplication table of n rows and n columns. 2025 is the 9th entry in >this sequence as it is the sum for the entries in a 9 x 9 multiplication >table. > >Can you calculate that function? sum(x=1..n) sum(y=1..n) [xy] = sum(x=1..n) [x sum(y=1..n) y] = [sum(x=1..n) x] [sum(y=1..n) y] = [sum(x=1..n)]^2 sum(x=1..n) is well known and easily seen geometrically. -- Richard