| Deutsch English Français Italiano |
|
<102e7h6$2jqav$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.logic
Subject: Re: Simple enough for every reader?
Date: Thu, 12 Jun 2025 11:44:06 +0200
Organization: A noiseless patient Spider
Lines: 26
Message-ID: <102e7h6$2jqav$2@dont-email.me>
References: <100a8ah$ekoh$1@dont-email.me> <878qmt1qz6.fsf@bsb.me.uk>
<100fu5r$1oqf5$1@dont-email.me> <87plg4yujh.fsf@bsb.me.uk>
<100ho1d$272si$1@dont-email.me> <87ecwizrrj.fsf@bsb.me.uk>
<100kbsj$2q30f$1@dont-email.me> <874ixbxy26.fsf@bsb.me.uk>
<100s897$lkp7$1@dont-email.me> <87r00dv5s4.fsf@bsb.me.uk>
<100ukdf$19g96$1@dont-email.me> <87ldqkura6.fsf@bsb.me.uk>
<1011f3m$1uskr$1@dont-email.me> <1011gn8$1vbtj$1@dont-email.me>
<1011r74$20v83$2@dont-email.me> <1014b3q$2k7is$1@dont-email.me>
<1014lg2$2l9jj$6@dont-email.me> <1019chq$3qkog$1@dont-email.me>
<1019sbs$3sv8u$4@dont-email.me> <101bv2f$dvr0$1@dont-email.me>
<101cgcu$gl20$3@dont-email.me> <101ekjv$12fvb$1@dont-email.me>
<101f1a6$14b34$1@dont-email.me> <101hf8a$22mhj$1@dont-email.me>
<101hmuh$25a4g$1@dont-email.me> <101manm$3t28r$1@dont-email.me>
<101mt5i$qln$2@dont-email.me> <102bd4j$1s22l$1@dont-email.me>
<102bpsc$1ud0p$3@dont-email.me> <102e1f6$2ilof$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 12 Jun 2025 11:44:06 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="185bb26b1d23d1e279d2cf2619f8b489";
logging-data="2746719"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+KLBGORDC5lmKf9hTNLFkekcWmwZ45w+U="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:xqbpkNd615GjQ8s5uM4b4Zy08gs=
Content-Language: en-US
In-Reply-To: <102e1f6$2ilof$1@dont-email.me>
On 12.06.2025 10:00, Mikko wrote:
> On 2025-06-11 11:38:52 +0000, WM said:
>
>> Outside of ZF in correct mathematics this proof for all definable
>> numbers n
>> |ℕ \ {1}| = ℵo.
>> |ℕ \ {m ∈ ℕ | m < n}| = ℵo
>> ==> |ℕ \ {m ∈ ℕ | m < n+1}| = ℵo.
>> shows that is impossible to extend definability to all natural numbers
>> with none remaining undefined.
>
> It does not show that. The "proof" does not even mention definability.
"this proof for all definable numbers n"
> The conclusion follows from the second sentence alone when n is understood
> to be universally quantified, so the first sentence is not needed and
> should
> not be there.
It is there. Only definablenumbers can be quantified as individuals.
Regards, WM
>