| Deutsch English Français Italiano |
|
<104dcdo$22er8$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail From: Mikko <mikko.levanto@iki.fi> Newsgroups: sci.logic Subject: Re: Simple enough for every reader? Date: Sun, 6 Jul 2025 11:34:00 +0300 Organization: - Lines: 20 Message-ID: <104dcdo$22er8$1@dont-email.me> References: <100a8ah$ekoh$1@dont-email.me> <1030dft$3obvv$1@dont-email.me> <10315us$3tqn8$2@dont-email.me> <1033805$lvet$1@dont-email.me> <1033ks9$1075$1@dont-email.me> <10360hf$10lrl$1@dont-email.me> <10365va$11afj$3@dont-email.me> <1038it5$epe7$1@dont-email.me> <1039873$jtod$1@dont-email.me> <103b13q$14dr9$1@dont-email.me> <103bc1r$17360$2@dont-email.me> <103dqb3$1u2kv$1@dont-email.me> <103engv$25bv0$1@dont-email.me> <103g9t2$2l4am$1@dont-email.me> <103hkv3$2voqr$1@dont-email.me> <103j7qu$3dl3j$1@dont-email.me> <103jgq9$3fje0$1@dont-email.me> <103lhgp$11qu$1@dont-email.me> <103mrsa$b011$1@dont-email.me> <103oe8v$ppfi$1@dont-email.me> <103osb9$sphe$1@dont-email.me> <103r4a7$1fl13$1@dont-email.me> <103ukik$2ahp0$1@dont-email.me> <1042o2k$3d5cj$1@dont-email.me> <1043dg5$3hor7$1@dont-email.me> <1045itl$3le8$1@dont-email.me> <1045vc8$5pd6$1@dont-email.me> <1048164$ndss$1@dont-email.me> <1048hlm$qhhe$1@dont-email.me> <104ao7i$1crr5$1@dont-email.me> <104b8gv$kfnr$2@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 06 Jul 2025 10:34:00 +0200 (CEST) Injection-Info: dont-email.me; posting-host="0a26e59935a533f85fcfe4899a18601c"; logging-data="2177896"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+HUtoCTTyfOXZxkG6eJ8Xt" User-Agent: Unison/2.2 Cancel-Lock: sha1:eD8K7ni+5oPyWzTBte73DTOwFxk= On 2025-07-05 13:15:11 +0000, WM said: > On 05.07.2025 10:37, Mikko wrote: >> On 2025-07-04 12:32:55 +0000, WM said: > >>> I only said: The definition of bijection requires completeness. >>> > >>> You: No, it doesn't. >> >> I also said what is worng in your claim: bijection only requires that >> there is one and only one element of co-domain for each element of >> domain, regardless of completeness. > > Bijection requires completeness of domain and codomain. So you say but cannot prove. -- Mikko