Deutsch   English   Français   Italiano  
<104dcdo$22er8$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: news.eternal-september.org!eternal-september.org!.POSTED!not-for-mail
From: Mikko <mikko.levanto@iki.fi>
Newsgroups: sci.logic
Subject: Re: Simple enough for every reader?
Date: Sun, 6 Jul 2025 11:34:00 +0300
Organization: -
Lines: 20
Message-ID: <104dcdo$22er8$1@dont-email.me>
References: <100a8ah$ekoh$1@dont-email.me> <1030dft$3obvv$1@dont-email.me> <10315us$3tqn8$2@dont-email.me> <1033805$lvet$1@dont-email.me> <1033ks9$1075$1@dont-email.me> <10360hf$10lrl$1@dont-email.me> <10365va$11afj$3@dont-email.me> <1038it5$epe7$1@dont-email.me> <1039873$jtod$1@dont-email.me> <103b13q$14dr9$1@dont-email.me> <103bc1r$17360$2@dont-email.me> <103dqb3$1u2kv$1@dont-email.me> <103engv$25bv0$1@dont-email.me> <103g9t2$2l4am$1@dont-email.me> <103hkv3$2voqr$1@dont-email.me> <103j7qu$3dl3j$1@dont-email.me> <103jgq9$3fje0$1@dont-email.me> <103lhgp$11qu$1@dont-email.me> <103mrsa$b011$1@dont-email.me> <103oe8v$ppfi$1@dont-email.me> <103osb9$sphe$1@dont-email.me> <103r4a7$1fl13$1@dont-email.me> <103ukik$2ahp0$1@dont-email.me> <1042o2k$3d5cj$1@dont-email.me> <1043dg5$3hor7$1@dont-email.me> <1045itl$3le8$1@dont-email.me> <1045vc8$5pd6$1@dont-email.me> <1048164$ndss$1@dont-email.me> <1048hlm$qhhe$1@dont-email.me> <104ao7i$1crr5$1@dont-email.me> <104b8gv$kfnr$2@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 06 Jul 2025 10:34:00 +0200 (CEST)
Injection-Info: dont-email.me; posting-host="0a26e59935a533f85fcfe4899a18601c";
	logging-data="2177896"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+HUtoCTTyfOXZxkG6eJ8Xt"
User-Agent: Unison/2.2
Cancel-Lock: sha1:eD8K7ni+5oPyWzTBte73DTOwFxk=

On 2025-07-05 13:15:11 +0000, WM said:

> On 05.07.2025 10:37, Mikko wrote:
>> On 2025-07-04 12:32:55 +0000, WM said:
> 
>>> I only said: The definition of bijection requires completeness.
>>>  >
>>> You: No, it doesn't.
>> 
>> I also said what is worng in your claim: bijection only requires that
>> there is one and only one element of co-domain for each element of
>> domain, regardless of completeness.
> 
> Bijection requires completeness of domain and codomain.

So you say but cannot prove.

-- 
Mikko