Warning: mysqli::__construct(): (HY000/1203): User howardkn already has more than 'max_user_connections' active connections in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\includes\artfuncs.php on line 21
Failed to connect to MySQL: (1203) User howardkn already has more than 'max_user_connections' active connections
Warning: mysqli::query(): Couldn't fetch mysqli in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\index.php on line 66
Article <2c8b9225d2abecd97de55f51d1ad6f08ec5a9b5c@i2pn2.org>
Deutsch   English   Français   Italiano  
<2c8b9225d2abecd97de55f51d1ad6f08ec5a9b5c@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.misty.com!weretis.net!feeder9.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail
From: joes <noreply@example.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Sun, 1 Dec 2024 11:59:57 -0000 (UTC)
Organization: i2pn2 (i2pn.org)
Message-ID: <2c8b9225d2abecd97de55f51d1ad6f08ec5a9b5c@i2pn2.org>
References: <vg7cp8$9jka$1@dont-email.me> <vi56or$3j04f$1@dont-email.me>
	<4a810760-86a1-44bb-a191-28f70e0b361b@att.net>
	<vi6uc3$3v0dn$4@dont-email.me>
	<b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
	<23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
	<e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
	<71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
	<via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me>
	<viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me>
	<vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me>
	<vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me>
	<bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me>
	<vierv5$1l1ot$2@dont-email.me> <vieudg$1n4rv$1@dont-email.me>
	<vievt2$1n9et$1@dont-email.me>
	<9510dd5dbc6edac4b3f35491638b7f27b25e6c43@i2pn2.org>
	<vifhhj$1rcah$2@dont-email.me>
	<09f402dd7ae9238423a75667c8cf2bba9552d728@i2pn2.org>
	<vifnvp$1rcah$4@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 1 Dec 2024 11:59:57 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="754810"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM";
User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a
 git.gnome.org/pan2)
X-Spam-Checker-Version: SpamAssassin 4.0.0
Bytes: 3302
Lines: 30

Am Sat, 30 Nov 2024 20:10:49 +0100 schrieb WM:
> On 30.11.2024 18:45, joes wrote:
>> Am Sat, 30 Nov 2024 18:20:51 +0100 schrieb WM:
> 
>>>> For an intersection, the "smallest" set matters, which there isn't in
>>>> this infinite sequence, only a "biggest".
>>> If all sets are infinite, then there is no smaller set than an
>>> infinite set.
>> True. All endsegments are infinite. But they form a chain of inclusion,
>> and there is no smallest set, because that chain is infinite.
> There is an infinite sequence of endsegments E(1), E(2), E(3), ... and
> an infinite sequence of their intersections E(1), E(1)∩E(2),
> E(1)∩E(2)∩E(3), ... .
> Both are identical - from the first endsegment on until every existing
> endsegment.
How surprising.

>>>>> The intersection of the "finite initial segment" of endsegments is
>>>>> ∩{E(1), E(2), ..., E(k)} = E(k)
>>>>> is a function which remains infinite for all infinite endsegments.
>>>>> If all endsegments remain infinite forever, then this function
>>>>> remains infinite forever.
>>>> It does for all finite k.
>>> Of course. Only for finite k the endsegments are infinite.
>> All natural k are finite.
> Then all endsegments are infinite like their intersections.
....for every natural (which are finite), but not for the limit.

-- 
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.