Deutsch   English   Français   Italiano  
<3HSfWkWj3Xj4oGtvt7n64fuMKlw@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!2.eu.feeder.erje.net!feeder.erje.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp
Message-ID: <3HSfWkWj3Xj4oGtvt7n64fuMKlw@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: Replacement of Cardinality
References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp> <ff390a80279179f6d2f4660ed19c150a88c787d6@i2pn2.org>
 <fTsvmGSlASVzQ_XgoQ2SIVFhqpg@jntp> <75740dedb5041bfadbbe4571e22e4ff345cd93bf@i2pn2.org>
 <Paq2Wew2rfZu1s9H9hwXXFLhSBw@jntp> <998ed11e2d39067be8c0c9879f61e373bb2614e9@i2pn2.org>
 <w30VwLUYPUYFb8Eh-FLLus061_Y@jntp> <c7d66fd7-3670-40f3-bc40-0b476c632ec4@att.net> <Ya-sll1vWfYnJI1pa9cChoUmSvk@jntp>
 <92f2ac6f-f77a-4d0d-a045-9382f2630ae4@att.net>
Newsgroups: sci.math
JNTP-HashClient: qrYJu2Z3-81BeuOj_aRoBO8HHgI
JNTP-ThreadID: KFm3f7lT2HjaTSiMfnv5xqZoSBw
JNTP-Uri: http://news2.nemoweb.net/?DataID=3HSfWkWj3Xj4oGtvt7n64fuMKlw@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Sun, 25 Aug 24 19:41:00 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="82b75c1d0a83e677ff646b52485f72f8b23749df"; logging-data="2024-08-25T19:41:00Z/9000314"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: WM <wolfgang.mueckenheim@tha.de>
Bytes: 2372
Lines: 22

Le 24/08/2024 à 22:16, Jim Burns a écrit :

> Many of us are more familiar with necklaces which
> have some minimum size of bead (or of whatever).

The unit fractions have no minimum distance but more than nothing.
> 
> For rationals,
> there is a greatest lower bound of distances
> between different rationals,
> but,
> for a minimum distance to exist,
> the greatest lower bound needs to be a distance.

For a distance to exist in every case mathematics is sufficicient:
∀n ∈ ℕ: 1/n - 1/(n+1) > 0 . 

> The greatest lower bound of distances is 0,

The distances between all unit fractions are positive. The GLB is to 
comfort blind persons who cannot think.

Regards, WM