Deutsch   English   Français   Italiano  
<3a9365035b2af6cf7aeede11452498989e420b4d@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!news.nk.ca!rocksolid2!i2pn2.org!.POSTED!not-for-mail
From: Richard Damon <richard@damon-family.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Fri, 27 Dec 2024 10:58:08 -0500
Organization: i2pn2 (i2pn.org)
Message-ID: <3a9365035b2af6cf7aeede11452498989e420b4d@i2pn2.org>
References: <vg7cp8$9jka$1@dont-email.me> <vjreik$1lokm$1@dont-email.me>
 <8d69d6cd-76bc-4dc1-894e-709d044e68a1@att.net> <vjst0u$1tqvv$3@dont-email.me>
 <7356267c-491b-45c2-b86a-d40c45dfa40c@att.net> <vjufr6$29khr$3@dont-email.me>
 <4bf8a77e-4b2a-471f-9075-0b063098153f@att.net> <vjv6uv$2dra0$1@dont-email.me>
 <31180d7e-1c2b-4e2b-b8d6-e3e62f05da43@att.net> <vk1brk$2srss$7@dont-email.me>
 <bb80c6c5-04c0-4e2d-bb21-ac51aab9e252@att.net> <vk23m7$31l8v$1@dont-email.me>
 <bce1b27d-170c-4385-8938-36805c983c49@att.net> <vk693m$f52$2@dont-email.me>
 <a17eb8b6-7d11-4c59-b98c-b4d5de8358ca@att.net> <vk7dmb$7mh2$2@dont-email.me>
 <b72490c1-e61a-4c23-a3a5-f624b2c084e4@att.net> <vk8tbq$j9h1$1@dont-email.me>
 <0393b227-fa2e-4649-a363-e53ab6e73327@att.net> <vka3i4$q8gm$1@dont-email.me>
 <vka9gq$rs83$1@dont-email.me> <vkb8cq$14c7u$3@dont-email.me>
 <ed9549eb9f3acf563c39acbc0b49f4d032dbf7ed@i2pn2.org>
 <vke37h$1q36j$1@dont-email.me>
 <7c930a1c536316c10e7382f20b747e147949ce43@i2pn2.org>
 <vklt5r$3hhem$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Fri, 27 Dec 2024 15:58:09 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="720402"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="diqKR1lalukngNWEqoq9/uFtbkm5U+w3w6FQ0yesrXg";
User-Agent: Mozilla Thunderbird
Content-Language: en-US
In-Reply-To: <vklt5r$3hhem$1@dont-email.me>
X-Spam-Checker-Version: SpamAssassin 4.0.0
Bytes: 2747
Lines: 20

On 12/27/24 4:48 AM, WM wrote:
> On 26.12.2024 20:59, joes wrote:
>> Am Tue, 24 Dec 2024 11:42:56 +0100 schrieb WM:
> 
>>> The sets E(n) decrease. If the sequence (E(n)) could not get empty one
>>> by one then Cantor could not set up an infinite sequence using all
>>> indices n of that sequence.
>> The „sequence” doesn’t „get” empty. No element is empty.
> 
> The sequence does not get empty in the visible domain. That proves that 
> not all indices can be applied and therefore there is no bijection with ℕ.
> 
> Regards, WM
> 


No, that does NOT prove what you claim.

The problem is that we can not "see" all the numbers at once, not 
because they are not all visible, but because we have finite vision, and 
there are an infinite number of the finite numbers n.