| Deutsch English Français Italiano |
|
<3dde285520d8f3e937d9bdc360a8a61567bd64f5@i2pn2.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.nk.ca!rocksolid2!i2pn2.org!.POSTED!not-for-mail From: joes <noreply@example.org> Newsgroups: sci.math Subject: Re: Replacement of Cardinality Date: Fri, 16 Aug 2024 16:49:25 -0000 (UTC) Organization: i2pn2 (i2pn.org) Message-ID: <3dde285520d8f3e937d9bdc360a8a61567bd64f5@i2pn2.org> References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp> <b0XFTJvTommasLo9Ns10OeW0TN0@jntp> <75e2ce0e-7df8-4266-968b-9c58e4140b03@att.net> <RCAlRuRy_RKB_tYItKJs7fNcIs0@jntp> <35d8c0a1-dab3-4c15-8f24-068e8200cb07@att.net> <sglIw8p3PCeHivaAhg-7IVZCN4A@jntp> <fcd3f5f1-fd6e-44ac-823d-fa567d5fb9ba@att.net> <t_rVz7RU7M3aHZTB1TQJS59Ez0I@jntp> <45ad1007-b1a7-49d0-a650-048f02738226@att.net> <v9lc9n$10teg$3@dont-email.me> <UMzq2D4JrBFmHiWT8a6U533RZeg@jntp> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Fri, 16 Aug 2024 16:49:25 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="2749386"; mail-complaints-to="usenet@i2pn2.org"; posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM"; User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2) X-Spam-Checker-Version: SpamAssassin 4.0.0 Bytes: 2335 Lines: 19 Am Fri, 16 Aug 2024 16:45:29 +0000 schrieb WM: > Le 15/08/2024 à 19:01, Moebius a écrit : > >> Assume that there is an x e IR such that NUF(x) = 1. Let x0 e IR such >> that NUF(x0) = 1. This means that there is exactly one unit fraction u >> such that u < x0. Let's call this unit fraction u0. Then (by >> definition) >> there is a (actually exactly one) natural number n such that u0 = 1/n. >> Let n0 e IN such that u0 = 1/n0. But then (again by definition) 1/(n0 + >> 1) is an unit fraction which is smaller than u0 and hence smaller than >> x0. Hence NUF(x0) > 1. Contradiction! > We can reduce the interval (0, x) c [0, 1] such that x converges to 0. > Then the number of unit fractions diminishes. Finally there is none > remaining. But never, for no interval (0, x), more than one unit > fraction is lost. Therefore there is only one last unit fraction. It does not diminish, there are always infinitely many. -- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math: It is not guaranteed that n+1 exists for every n.