Deutsch   English   Français   Italiano  
<3dde285520d8f3e937d9bdc360a8a61567bd64f5@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!news.nk.ca!rocksolid2!i2pn2.org!.POSTED!not-for-mail
From: joes <noreply@example.org>
Newsgroups: sci.math
Subject: Re: Replacement of Cardinality
Date: Fri, 16 Aug 2024 16:49:25 -0000 (UTC)
Organization: i2pn2 (i2pn.org)
Message-ID: <3dde285520d8f3e937d9bdc360a8a61567bd64f5@i2pn2.org>
References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp>
	<b0XFTJvTommasLo9Ns10OeW0TN0@jntp>
	<75e2ce0e-7df8-4266-968b-9c58e4140b03@att.net>
	<RCAlRuRy_RKB_tYItKJs7fNcIs0@jntp>
	<35d8c0a1-dab3-4c15-8f24-068e8200cb07@att.net>
	<sglIw8p3PCeHivaAhg-7IVZCN4A@jntp>
	<fcd3f5f1-fd6e-44ac-823d-fa567d5fb9ba@att.net>
	<t_rVz7RU7M3aHZTB1TQJS59Ez0I@jntp>
	<45ad1007-b1a7-49d0-a650-048f02738226@att.net>
	<v9lc9n$10teg$3@dont-email.me> <UMzq2D4JrBFmHiWT8a6U533RZeg@jntp>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Fri, 16 Aug 2024 16:49:25 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="2749386"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM";
User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a
 git.gnome.org/pan2)
X-Spam-Checker-Version: SpamAssassin 4.0.0
Bytes: 2335
Lines: 19

Am Fri, 16 Aug 2024 16:45:29 +0000 schrieb WM:
> Le 15/08/2024 à 19:01, Moebius a écrit :
> 
>> Assume that there is an x e IR such that NUF(x) = 1. Let x0 e IR such
>> that NUF(x0) = 1. This means that there is exactly one unit fraction u
>> such that u < x0. Let's call this unit fraction u0. Then (by
>> definition)
>> there is a (actually exactly one) natural number n such that u0 = 1/n.
>> Let n0 e IN such that u0 = 1/n0. But then (again by definition) 1/(n0 +
>> 1) is an unit fraction which is smaller than u0 and hence smaller than
>> x0. Hence NUF(x0) > 1. Contradiction!
> We can reduce the interval (0, x) c [0, 1] such that x converges to 0.
> Then the number of unit fractions diminishes. Finally there is none
> remaining. But never, for no interval (0, x), more than one unit
> fraction is lost. Therefore there is only one last unit fraction.
It does not diminish, there are always infinitely many.

-- 
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.