| Deutsch English Français Italiano |
|
<497897fcf81a1a0981638d29e4b4102c09c39960@i2pn2.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail From: joes <noreply@example.org> Newsgroups: sci.math Subject: Re: How many different unit fractions are lessorequal than all unit fractions? Date: Tue, 8 Oct 2024 13:18:20 -0000 (UTC) Organization: i2pn2 (i2pn.org) Message-ID: <497897fcf81a1a0981638d29e4b4102c09c39960@i2pn2.org> References: <vb4rde$22fb4$2@solani.org> <vdpbuv$alvo$1@dont-email.me> <8c94a117d7ddaba3e7858116dc5bc7c66a46c405@i2pn2.org> <vdqttc$mnhd$1@dont-email.me> <vdr1g3$n3li$6@dont-email.me> <8ce3fac3a0c92d85c72fec966d424548baebe5af@i2pn2.org> <vdrd5q$sn2$2@news.muc.de> <55cbb075e2f793e3c52f55af73c82c61d2ce8d44@i2pn2.org> <vdrgka$sn2$3@news.muc.de> <vds38v$1ih6$6@solani.org> <vdscnj$235p$1@news.muc.de> <vdtt15$16hg6$4@dont-email.me> <vdu54i$271t$1@news.muc.de> <vduata$19d4m$1@dont-email.me> <vduf0m$1tif$1@news.muc.de> <vdufu0$1a71q$1@dont-email.me> <ve07ca$1kopi$3@dont-email.me> <ve0a35$1lnvn$1@dont-email.me> <ve0avf$3q71$1@solani.org> <a9271d478a0bc0f2ddc2b1404dfa2cc17e17aa6f@i2pn2.org> <ve353a$24i4i$8@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Tue, 8 Oct 2024 13:18:20 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="1111548"; mail-complaints-to="usenet@i2pn2.org"; posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM"; User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2) X-Spam-Checker-Version: SpamAssassin 4.0.0 Bytes: 2263 Lines: 17 Am Tue, 08 Oct 2024 13:29:46 +0200 schrieb WM: > On 07.10.2024 17:19, joes wrote: >> Am Mon, 07 Oct 2024 11:51:43 +0200 schrieb WM: > >>>> There is no smallest unit fraction. >>> If there are only fixed points, then there is a point such that >>> between it and zero there is no further point. >> How do you imagine that? > One of discrete points is always next to zero. Why is there no closer point? > > It has a finite distance from 0. > Of course, but this point cannot be found. What does this mean, it cannot be known? -- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math: It is not guaranteed that n+1 exists for every n.