Deutsch English Français Italiano |
<4de710ba8480d3b428a39d6cb5e571da24c67033@i2pn2.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!i2pn.org!i2pn2.org!.POSTED!not-for-mail From: Richard Damon <richard@damon-family.org> Newsgroups: comp.theory Subject: Re: Cantor Diagonal Proof Date: Sun, 13 Apr 2025 19:39:33 -0400 Organization: i2pn2 (i2pn.org) Message-ID: <4de710ba8480d3b428a39d6cb5e571da24c67033@i2pn2.org> References: <vsn1fu$1p67k$1@dont-email.me> <vsr1ae$1pr17$2@dont-email.me> <vst4nm$8daf$2@dont-email.me> <vst8ci$aeqh$3@dont-email.me> <vsutjt$21mp2$2@dont-email.me> <vsuvp1$227l5$1@dont-email.me> <vsvv3h$36pju$2@dont-email.me> <vt01u5$38f07$1@dont-email.me> <875xjfd5rs.fsf@nosuchdomain.example.com> <vt1jpa$n43m$4@dont-email.me> <87tt6zblzl.fsf@nosuchdomain.example.com> <0920ac6e196c1cebeff36d8b9431ee12a7b3d527@i2pn2.org> <vt74k1$1pl6i$5@dont-email.me> <74db303c1d07ba0fdf70f1b20f5f7d6e04667665@i2pn2.org> <vt9nr3$5t7s$5@dont-email.me> <4f2f706fdbd8bb237b4bfbc750f65482db6e96c7@i2pn2.org> <vtag8u$vqm0$3@dont-email.me> <c7320364d5ad63cd30018fa0082e8dcc60ad2534@i2pn2.org> <vtc4ao$2mlfb$4@dont-email.me> <84c84545ad9509384f5378553217346b12512a97@i2pn2.org> <vtha1c$3oh15$2@dont-email.me> <87h62rg1rx.fsf@nosuchdomain.example.com> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 14 Apr 2025 00:02:03 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="241454"; mail-complaints-to="usenet@i2pn2.org"; posting-account="diqKR1lalukngNWEqoq9/uFtbkm5U+w3w6FQ0yesrXg"; User-Agent: Mozilla Thunderbird Content-Language: en-US In-Reply-To: <87h62rg1rx.fsf@nosuchdomain.example.com> X-Spam-Checker-Version: SpamAssassin 4.0.0 Bytes: 2890 Lines: 25 On 4/13/25 6:00 PM, Keith Thompson wrote: > Lawrence D'Oliveiro <ldo@nz.invalid> writes: >> On Fri, 11 Apr 2025 21:41:48 -0400, Richard Damon wrote: >>> Yes, but since you need the algorithms to compute ALL the numbers in >>> your code, you can't put them all in. >> >> But the Cantor construction relies on constructing precisely such a list. >> If you can’t put together such a list, then you can’t perform the Cantor >> construction. > > The Cantor construction *assumes* the existence of such a list, > demonstrates that that assumption leads to a contradiction, and > concludes that no such list can exist. > Cantor shows that no list of REAL numbers can be created. But there is also the later reuse of the arguement for the domain of Computable Numbers, and there, the list CAN be made (but not computed). One method can simply use the axiom of choice and sorting of representations. What this shows is that since we KNOW the computable numbers must be countable, that the diagonal must not be computable, and thus there is no "master algorithm" that can compute and arbitrary digit of an arbitrary number.