| Deutsch English Français Italiano |
|
<5e43762be08cf22660caae5e56dd1ee0e98b94e3@i2pn2.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.nk.ca!rocksolid2!i2pn2.org!.POSTED!not-for-mail From: joes <noreply@example.org> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Thu, 21 Nov 2024 20:59:35 -0000 (UTC) Organization: i2pn2 (i2pn.org) Message-ID: <5e43762be08cf22660caae5e56dd1ee0e98b94e3@i2pn2.org> References: <vg7cp8$9jka$1@dont-email.me> <vhb1is$6hbv$2@dont-email.me> <vhb1mu$6hbv$4@dont-email.me> <vhb32t$7ese$1@dont-email.me> <vhch7n$hge9$2@dont-email.me> <vhcieh$jjk5$1@dont-email.me> <vhcjg5$hdd4$3@dont-email.me> <vhckkh$k32g$1@dont-email.me> <vhcp0r$hge9$6@dont-email.me> <vhd7d7$nt37$1@dont-email.me> <vhd9lq$obb0$1@dont-email.me> <883377b7ebbd9d5d528db048daf9f682e3854ae8@i2pn2.org> <vhdfu1$p3fg$2@dont-email.me> <vhdlgc$qod3$1@dont-email.me> <vhfrnd$1adlc$2@dont-email.me> <vhfsfu$1bgpj$1@dont-email.me> <vhfuta$1adlc$3@dont-email.me> <vhgd02$1ep1p$1@dont-email.me> <vhge3n$1eu67$1@dont-email.me> <vhgfec$1f6mn$1@dont-email.me> <vhi8c0$1sjsn$1@dont-email.me> <vhif1d$1u4gp$1@dont-email.me> <vhkj2p$25fe$1@dont-email.me> <vhkqs7$4jg8$1@dont-email.me> <vhl4lk$5q4u$1@dont-email.me> <vhlfel$8hr6$1@dont-email.me> <vhljo1$97jt$1@dont-email.me> <vhlpob$aa52$1@dont-email.me> <vhn6a3$jf6v$4@dont-email.me> <vhnb77$la73$1@dont-email.me> <vhnols$n2pc$2@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Thu, 21 Nov 2024 20:59:35 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="3542090"; mail-complaints-to="usenet@i2pn2.org"; posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM"; User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2) X-Spam-Checker-Version: SpamAssassin 4.0.0 Bytes: 2724 Lines: 21 Am Thu, 21 Nov 2024 17:55:25 +0100 schrieb WM: > On 21.11.2024 14:05, FromTheRafters wrote: >> WM wrote : > >>>>>>> Let every unit interval after a natural number on the real axis be >>>>>>> coloured white with exception of the powers of 2 which are >>>>>>> coloured black. Is it possible to shift the black intervals so >>>>>>> that the whole real axis becomes black? > >>> The analytical limit is wrong in your opinion? >> Which limit? > The limit of the sequence f(n) of relative coverings in the interval (0, > n] is 0, not 1. Yes, of the infinite real axis none are black. >> Which limit? > That is where Cantor's bijections are believed to be complete. I mean, bijections are also complete for every finite subset. -- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math: It is not guaranteed that n+1 exists for every n.