Deutsch   English   Français   Italiano  
<67bdd9af$0$29738$426a74cc@news.free.fr>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.mixmin.net!feeder1-2.proxad.net!proxad.net!feeder1-1.proxad.net!cleanfeed2-b.proxad.net!nnrp1-2.free.fr!not-for-mail
Date: Tue, 25 Feb 2025 15:54:39 +0100
MIME-Version: 1.0
User-Agent: Mozilla Thunderbird
Newsgroups: fr.test
Content-Language: en-US
From: kurtz le pirate <kurtzlepirate@free.fr>
Subject: Test FREE - 2025-02-25-15:54
Organization: compagnie de la banquise
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Lines: 19
Message-ID: <67bdd9af$0$29738$426a74cc@news.free.fr>
NNTP-Posting-Date: 25 Feb 2025 15:54:39 CET
NNTP-Posting-Host: 88.123.184.107
X-Trace: 1740495279 news-1.free.fr 29738 88.123.184.107:13408
X-Complaints-To: abuse@proxad.net
Bytes: 1562

In mathematics, a saddle point or minimax point[1] is a point on the 
surface of the graph of a function where the slopes (derivatives) in 
orthogonal directions are all zero (a critical point), but which is not 
a local extremum of the function. An example of a saddle point is when 
there is a critical point with a relative minimum along one axial 
direction (between peaks) and a relative maximum along the crossing 
axis. However, a saddle point need not be in this form. For example, the 
function f(x,y) = x^2 + y^3 has a critical point at (0,0) that is a 
saddle point since it is neither a relative maximum nor relative 
minimum, but it does not have a relative maximum or relative minimum in 
the y-direction.




-- 
kurtz le pirate
compagnie de la banquise