Deutsch   English   Français   Italiano  
<6ae452e9b268b5b4c1867d9a7ca9fc023ecec9ef@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail
From: Richard Damon <richard@damon-family.org>
Newsgroups: sci.math
Subject: Re: How many different unit fractions are lessorequal than all unit
 fractions?
Date: Fri, 6 Sep 2024 22:01:16 -0400
Organization: i2pn2 (i2pn.org)
Message-ID: <6ae452e9b268b5b4c1867d9a7ca9fc023ecec9ef@i2pn2.org>
References: <vb4rde$22fb4$2@solani.org>
 <0da78c91e9bc2e4dc5de13bd16e4037ceb8bdfd4@i2pn2.org>
 <vb57lf$2vud1$1@dont-email.me> <5d8b4ac0-3060-40df-8534-3e04bb77c12d@att.net>
 <vb6o0r$3a4m1$2@dont-email.me> <7e1e3f62-1fba-4484-8e34-6ff8f1e54625@att.net>
 <vbabbm$24a94$1@solani.org> <06ee7920-eff2-4687-be98-67a89b301c93@att.net>
 <38ypmjbnu3EfnKYR4tSIu-WavbA@jntp>
 <34e11216-439f-4b11-bdff-1a252ac98f8f@att.net> <vbd56i$fqa0$1@dont-email.me>
 <vbdbq3$gdoe$2@dont-email.me> <vbes57$qdqo$2@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sat, 7 Sep 2024 02:01:16 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="1049104"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="diqKR1lalukngNWEqoq9/uFtbkm5U+w3w6FQ0yesrXg";
User-Agent: Mozilla Thunderbird
In-Reply-To: <vbes57$qdqo$2@dont-email.me>
Content-Language: en-US
X-Spam-Checker-Version: SpamAssassin 4.0.0
Bytes: 2311
Lines: 24

On 9/6/24 8:22 AM, WM wrote:
> On 06.09.2024 00:36, Python wrote:
>> Le 05/09/2024 à 22:44, crank Wolfgang Mückenheim, aka WM a écrit :
> 
>>>
>>> You are mistaken. I do not conclude the latter from the former. I 
>>> conclude the latter from the fact that NUF(0) = 0 and NUF(x>0) > 0 
>>> and never, at no x, NUF can increase by more than 1.
>>
>> What the Hell could mean "to increase at an x" ?
> 
> Example: The function f(x) = [x] increases at every x ∈ ℕ by 1.
> The function NUF(x) increases at every x = unit fraction 1/n by 1.
> It does not increase at 0 because 0 is not a unit fraction.
> 
> Regards, WM

Except that is can't because there is no "smallest" unit fraction to 
count from.

Thus, either NUF(x) increases at some sub-finite values, or it doesn't 
exists.

Sorry, you just don't understand that you need to show existance and not 
just presume it.