Deutsch   English   Français   Italiano  
<6zyq9bN8OQAtP6OyXIOtCtWzEjk@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!npeer.as286.net!npeer-ng0.as286.net!feeder1-1.proxad.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp
Message-ID: <6zyq9bN8OQAtP6OyXIOtCtWzEjk@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: how
References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <08f3f962-d6b1-4f7c-b870-8cf29b85e2a7@att.net> <71YzuacI59BwfJhMavFstYgzlhs@jntp>
 <1e67c0e8-bf67-4d48-9896-57d429fd770c@att.net> <s0sZbdtbdzl3l1994GSDxosTxrc@jntp>
 <881f89fb-994d-4315-b134-4aec1576bca8@att.net> <vol0FSJMuqv_Uox5qeHDiF8wsA4@jntp>
 <9f8cd558-96b5-464a-8203-807b13fc565e@att.net> <y-weeuspdPzPjrZczT9yOk8IHaA@jntp>
 <0e7906d7-fa17-44c1-b45c-4e08ab8fbb89@att.net>
Newsgroups: sci.math
JNTP-HashClient: 0KBIt7eaSTQ8PFs9Vd4i5nqH_Jo
JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY
JNTP-Uri: http://news2.nemoweb.net/?DataID=6zyq9bN8OQAtP6OyXIOtCtWzEjk@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Wed, 22 May 24 17:57:28 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="7a19405b4245f47946ffce65063ceb09f86be43b"; logging-data="2024-05-22T17:57:28Z/8868685"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: WM <wolfgang.mueckenheim@tha.de>
Bytes: 3339
Lines: 53

Le 22/05/2024 à 17:48, Jim Burns a écrit :
> On 5/22/2024 6:43 AM, WM wrote:
>> Le 22/05/2024 à 01:27, Jim Burns a écrit :
> 
>>> ℝ is ℚ and points between non.∅ splits of ℚ 
> 
>>> for any x > 0
>>
>> that you can determine
> 
> For any x > 0 in ℚ or between a non.∅ split of ℚ
> more.than.any.k<ℵ₀ unit.fractions
> sit before x
> among them are ⅟⌊(1+sₓ/rₓ)⌋ to ⅟⌊(k+1+sₓ/rₓ)⌋
> 0 < rₓ/sₓ < x

Between each pair of unit fractions, there is a finite distance (with many 
points x > 0).
Hence not even two unit fractions can satisfy the condition to sit before 
any x > 0.
Therefore Ax > 0: NUF(x) = ℵo is wrong.
> 
>> If
>> there is no unit fraction smaller than all x > 0,
>> then
>> there is an x > 0 preventing this.
>
> There is no x > 0 smaller than all unit fractions.
> ¬∃ᴿx > 0: ∀¹ᐟᴺ ⅟k: x ≤ ⅟k

There is an x >= 0 smaller than all unit fractions.
> 
> | Assume otherwise.
> | Assume x¹ᐟᴺ > 0:  ∀¹ᐟᴺ ⅟k: x¹ᐟᴺ ≤ ⅟k

That does not destroy this condition:
Between each pair of unit fractions,
there is a finite distance.
Hence not even two unit fractions can satisfy the condition to sit before 
any x > 0.
Therefore Ax > 0: NUF(x) = ℵo is wrong.

Why do you never address this fact?

Of course if all numbers were visisble, we had a contradiction. That does 
not change by your repeated proofs of this fact. 

Try to refute this fact: Between each pair of unit fractions, there is a 
finite distance. Therefore of many unit fractions, all but at most one are 
not smaller than every x > 0. Hence
Ax > 0: NUF(x) = ℵo is wrong.

Regards, WM