Deutsch   English   Français   Italiano  
<71YzuacI59BwfJhMavFstYgzlhs@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!2.eu.feeder.erje.net!feeder.erje.net!newsfeed.bofh.team!news.nntp4.net!pasdenom.info!from-devjntp
Message-ID: <71YzuacI59BwfJhMavFstYgzlhs@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: how
References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <v1u70d$3o5i6$1@dont-email.me> <TZvV2EtNY394LRPsxQynZs6a68M@jntp>
 <v1vpav$6g8p$2@dont-email.me> <0rlKTzl7_uYwvqKe84l-5MJZAoE@jntp> <daccd066-734a-4138-a64a-e0766e69eadf@att.net>
 <v26378$1q819$1@dont-email.me> <9310488b-e8c6-4ed8-913d-4abb7e241271@att.net> <t7-UZ1TyOKj1K2a2HoqROmxls_c@jntp>
 <08f3f962-d6b1-4f7c-b870-8cf29b85e2a7@att.net>
Newsgroups: sci.math
JNTP-HashClient: HpqyIBFFHaWtaE_mdsviaqlfNIo
JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY
JNTP-Uri: http://news2.nemoweb.net/?DataID=71YzuacI59BwfJhMavFstYgzlhs@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Sun, 19 May 24 15:46:23 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="7a19405b4245f47946ffce65063ceb09f86be43b"; logging-data="2024-05-19T15:46:23Z/8864191"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: WM <wolfgang.mueckenheim@tha.de>
Bytes: 2858
Lines: 42

Le 17/05/2024 à 21:08, Jim Burns a écrit :
> On 5/17/2024 10:08 AM, WM wrote:
>> Le 17/05/2024 à 02:21, Jim Burns a écrit :
>>> On 5/16/2024 7:00 PM, Moebius wrote:
>>>> Am 16.05.2024 um 20:56 schrieb Jim Burns:
>>>>> On 5/15/2024 9:12 AM, WM wrote:

>> Between each pair of unit fractions,
>> there is a finite distance.
> 
> Before each unit fraction ⅟n,
> there is a smaller unit fraction ⅟(n+1).

These two conditions cannot be satisfied simultaneously.
> 
> Each unit fraction is not first.
> The unit.fraction.subset of the real line
> does NOT have a first element.

This condition violates this condition:
> 
>> To gather ℵ₀ unit fractions,
>> ℵ₀ finite distances are required.

>> Their sum is not zero.
> 
> The greatest lower bound of d > 0 is 0
> which does NOT contradict |(x,x+d)| ≮ ℵ₀

It contradicts this: To gather ℵ₀ unit fractions, ℵ₀ finite 
distances are required. And even this one: To gather two unit fractions, a 
finite distance is required.
> 
>> Therefore the statement
>> NUF(x) = ℵ₀ für x > 0
>> is wrong.

Please let me know where your claimed ℵ₀ first unit fractions sit. The 
interval is (0, ?). Please fill in. Otherwise your claims are 
counterfactual.

Regards, WM