Deutsch English Français Italiano |
<71YzuacI59BwfJhMavFstYgzlhs@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!2.eu.feeder.erje.net!feeder.erje.net!newsfeed.bofh.team!news.nntp4.net!pasdenom.info!from-devjntp Message-ID: <71YzuacI59BwfJhMavFstYgzlhs@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: how References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <v1u70d$3o5i6$1@dont-email.me> <TZvV2EtNY394LRPsxQynZs6a68M@jntp> <v1vpav$6g8p$2@dont-email.me> <0rlKTzl7_uYwvqKe84l-5MJZAoE@jntp> <daccd066-734a-4138-a64a-e0766e69eadf@att.net> <v26378$1q819$1@dont-email.me> <9310488b-e8c6-4ed8-913d-4abb7e241271@att.net> <t7-UZ1TyOKj1K2a2HoqROmxls_c@jntp> <08f3f962-d6b1-4f7c-b870-8cf29b85e2a7@att.net> Newsgroups: sci.math JNTP-HashClient: HpqyIBFFHaWtaE_mdsviaqlfNIo JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY JNTP-Uri: http://news2.nemoweb.net/?DataID=71YzuacI59BwfJhMavFstYgzlhs@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Sun, 19 May 24 15:46:23 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="7a19405b4245f47946ffce65063ceb09f86be43b"; logging-data="2024-05-19T15:46:23Z/8864191"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2858 Lines: 42 Le 17/05/2024 à 21:08, Jim Burns a écrit : > On 5/17/2024 10:08 AM, WM wrote: >> Le 17/05/2024 à 02:21, Jim Burns a écrit : >>> On 5/16/2024 7:00 PM, Moebius wrote: >>>> Am 16.05.2024 um 20:56 schrieb Jim Burns: >>>>> On 5/15/2024 9:12 AM, WM wrote: >> Between each pair of unit fractions, >> there is a finite distance. > > Before each unit fraction ⅟n, > there is a smaller unit fraction ⅟(n+1). These two conditions cannot be satisfied simultaneously. > > Each unit fraction is not first. > The unit.fraction.subset of the real line > does NOT have a first element. This condition violates this condition: > >> To gather ℵ₀ unit fractions, >> ℵ₀ finite distances are required. >> Their sum is not zero. > > The greatest lower bound of d > 0 is 0 > which does NOT contradict |(x,x+d)| ≮ ℵ₀ It contradicts this: To gather ℵ₀ unit fractions, ℵ₀ finite distances are required. And even this one: To gather two unit fractions, a finite distance is required. > >> Therefore the statement >> NUF(x) = ℵ₀ für x > 0 >> is wrong. Please let me know where your claimed ℵ₀ first unit fractions sit. The interval is (0, ?). Please fill in. Otherwise your claims are counterfactual. Regards, WM