Warning: mysqli::__construct(): (HY000/1203): User howardkn already has more than 'max_user_connections' active connections in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\includes\artfuncs.php on line 21
Failed to connect to MySQL: (1203) User howardkn already has more than 'max_user_connections' active connections
Warning: mysqli::query(): Couldn't fetch mysqli in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\index.php on line 66
Article <7aa4daa380966c031798568433c3a7e079cd29cf@i2pn2.org>
Deutsch   English   Français   Italiano  
<7aa4daa380966c031798568433c3a7e079cd29cf@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail
From: joes <noreply@example.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Mon, 16 Dec 2024 15:40:30 -0000 (UTC)
Organization: i2pn2 (i2pn.org)
Message-ID: <7aa4daa380966c031798568433c3a7e079cd29cf@i2pn2.org>
References: <vg7cp8$9jka$1@dont-email.me> <vijrru$37ce1$1@dont-email.me>
	<vikh9k$3cua3$1@dont-email.me> <viml28$6j3$1@dont-email.me>
	<0b1bb1a1-40e3-464f-9e3d-a5ac22dfdc6f@tha.de>
	<95183b4d9c2e32651963bac79965313ad2bfe7e8@i2pn2.org>
	<vj6vhh$elqh$2@dont-email.me>
	<33512b63716ac263c16b7d64cd1d77578c8aea9d@i2pn2.org>
	<vj9s4i$11a3p$1@dont-email.me> <vjam6d$1700v$1@dont-email.me>
	<vjc65g$1i9vk$3@dont-email.me> <vjf7kl$2s7e5$1@dont-email.me>
	<vjfmq3$2upa9$3@dont-email.me>
	<c6b624cb0b1b55d54aab969ee5b4e283ec7be3cd@i2pn2.org>
	<vjhp8b$3gjbv$1@dont-email.me>
	<dc9e7638be92c4d158f238f8c042c8559cd46521@i2pn2.org>
	<vjjg6p$3tvsg$1@dont-email.me>
	<c31edc62508876748c8cf69f93ab80c0a7fd84ac@i2pn2.org>
	<vjka3b$1tms$3@dont-email.me>
	<e11a34c507a23732d83e3d0fcde7b609cdaf3ade@i2pn2.org>
	<vjmse3$k2go$2@dont-email.me>
	<069069bf23698c157ddfd9b62b9b2f632b484c40@i2pn2.org>
	<vjooeq$11n0g$2@dont-email.me>
	<c611fdd5710ea4e05d421327898dfd48277b66d6@i2pn2.org>
	<vjpbo0$15bha$2@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 16 Dec 2024 15:40:30 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="3093819"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM";
User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a
 git.gnome.org/pan2)
X-Spam-Checker-Version: SpamAssassin 4.0.0
Bytes: 2446
Lines: 13

Am Mon, 16 Dec 2024 14:59:27 +0100 schrieb WM:
> On 16.12.2024 12:55, joes wrote:
>> Am Mon, 16 Dec 2024 09:30:18 +0100 schrieb WM:
> 
>>> All intervals do it because there is no n outside of all intervals [1,
>>> n]. My proof applies all intervals.
>> It does not. It applies to every single finite „interval”,
> What element is not covered by all intervals that I use?
>> but not to the whole N.
You do not cover N, only finite parts.

-- 
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.