Deutsch   English   Français   Italiano  
<7e532aaf77653daac5ca2b70bf26d0a3bc515abf@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: news.eternal-september.org!eternal-september.org!feeder3.eternal-september.org!i2pn.org!i2pn2.org!.POSTED!not-for-mail
From: Richard Damon <richard@damon-family.org>
Newsgroups: sci.logic
Subject: Re: Mathematical incompleteness has always been a misconception ---
 Tarski
Date: Sun, 9 Feb 2025 08:10:37 -0500
Organization: i2pn2 (i2pn.org)
Message-ID: <7e532aaf77653daac5ca2b70bf26d0a3bc515abf@i2pn2.org>
References: <vnh0sq$35mcm$1@dont-email.me> <vni4ta$3ek8m$1@dont-email.me>
 <vnikre$3hb19$1@dont-email.me> <vnkov9$1971$1@dont-email.me>
 <vnl9vj$4f8i$1@dont-email.me> <vnndqs$kef3$1@dont-email.me>
 <vnpd96$vl84$1@dont-email.me> <vnqm3p$1apip$1@dont-email.me>
 <vnqsbh$1c5sq$1@dont-email.me> <vnsm90$1pr86$1@dont-email.me>
 <vnte6s$1tra8$1@dont-email.me> <vnv4tf$2a43e$1@dont-email.me>
 <vo0249$2eqdl$1@dont-email.me> <vo1qae$2s4cr$1@dont-email.me>
 <vo2i10$302f0$1@dont-email.me> <vo4nj4$3f6so$1@dont-email.me>
 <vo5btf$3ipo2$1@dont-email.me> <vo7ckh$q2p$1@dont-email.me>
 <vo7tdg$36ra$6@dont-email.me> <voa09t$idij$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Sun, 9 Feb 2025 13:10:37 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="3424083"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="diqKR1lalukngNWEqoq9/uFtbkm5U+w3w6FQ0yesrXg";
User-Agent: Mozilla Thunderbird
In-Reply-To: <voa09t$idij$1@dont-email.me>
X-Spam-Checker-Version: SpamAssassin 4.0.0
Content-Language: en-US

On 2/9/25 5:33 AM, Mikko wrote:
> Of course, completness can be achieved if language is sufficiently
> restricted so that sufficiently many arithemtic truths become 
> inexpressible.
> 
> It is far from clear that a theory of that kind can express all arithmetic
> truths that Peano arithmetic can and avoid its incompletness.

WHich, it seems, are the only type of logic system that Peter can 
understand.

He can only think in primitive logic systems that can't reach the 
complexity needed for the proofs he talks about, but can't see the 
problem, as he just doesn't understand the needed concepts.