| Deutsch English Français Italiano |
|
<83b0763709eeeca543bf19d9d08014d75d0e2b78@i2pn2.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!fu-berlin.de!eternal-september.org!feeder3.eternal-september.org!i2pn.org!i2pn2.org!.POSTED!not-for-mail
From: joes <noreply@example.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
(extra-ordinary)
Date: Wed, 15 Jan 2025 19:54:39 -0000 (UTC)
Organization: i2pn2 (i2pn.org)
Message-ID: <83b0763709eeeca543bf19d9d08014d75d0e2b78@i2pn2.org>
References: <vg7cp8$9jka$1@dont-email.me> <vlir7p$24c51$1@dont-email.me>
<417ff6da-86ee-4b3a-b07a-9c6a8eb31368@att.net>
<vllfof$2n0uj$2@dont-email.me>
<07258ab9-eee1-4aae-902a-ba39247d5942@att.net>
<vlmst2$2vjr0$3@dont-email.me>
<1ebbc233d6bab7878b69cae3eda48c7bbfd07f88@i2pn2.org>
<vlo5f4$39hil$2@dont-email.me>
<4c89380adaad983f24d5d6a75842aaabbd1adced@i2pn2.org>
<vloule$3eqsr$1@dont-email.me>
<ffffed23878945243684de7f2aa9aaaf29564508@i2pn2.org>
<vlrej9$2m5k$1@dont-email.me> <d6ed4797-65e8-4004-853c-f07a37af0c11@att.net>
<vls4j6$7v2k$3@dont-email.me> <494bfd3b-3c70-4d8d-9c70-ce917c15fc22@att.net>
<vm0okb$16cq0$2@dont-email.me>
<bff18686-503a-4b7b-9406-b47796f68b47@att.net>
<vm15pj$18v7t$1@dont-email.me>
<72142d82-0d71-460a-a1be-cadadf78c048@att.net>
<vm3hrs$1s9ld$2@dont-email.me>
<812e64b1-c85c-48ac-a58c-e8955bc02f8c@att.net>
<vm59g4$2b5ib$1@dont-email.me>
<aca83786cb60134e106c96414e223bab91d21482@i2pn2.org>
<vm8t0f$31v8s$2@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 15 Jan 2025 19:54:39 -0000 (UTC)
Injection-Info: i2pn2.org;
logging-data="3699259"; mail-complaints-to="usenet@i2pn2.org";
posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM";
User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a
git.gnome.org/pan2)
X-Spam-Checker-Version: SpamAssassin 4.0.0
Bytes: 2282
Lines: 10
Am Wed, 15 Jan 2025 18:58:40 +0100 schrieb WM:
> On 14.01.2025 13:37, Richard Damon wrote:
>
>> EVERY Natural Number is "Definable",
> Then remove the set ℕ by application of only definable numbers:
> ℕ \ {1} \ {1, 2} \ {1, 2, 3} \ ...
Yes, N \ {1, 2, 3, ...} = {}.
--
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.