Deutsch   English   Français   Italiano  
<8856b99c972dd6f6c3cb1faa2aabc6357ee695a1@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail
From: joes <noreply@example.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Wed, 4 Dec 2024 15:00:58 -0000 (UTC)
Organization: i2pn2 (i2pn.org)
Message-ID: <8856b99c972dd6f6c3cb1faa2aabc6357ee695a1@i2pn2.org>
References: <vg7cp8$9jka$1@dont-email.me> <vi6uc3$3v0dn$4@dont-email.me>
	<b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
	<23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
	<e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
	<71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
	<via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me>
	<viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me>
	<vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me>
	<vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me>
	<bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me>
	<vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me>
	<vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me>
	<9bcc128b-dea8-4397-9963-45c93d1c14c7@att.net>
	<vimvgd$3vv5r$9@dont-email.me>
	<50c82b03-8aa1-492c-9af3-4cf2673d6516@att.net> <vip5mo$p0da$1@dont-email.me>
	<vipb6l$qfig$1@dont-email.me> <viplj0$t1f8$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 4 Dec 2024 15:00:58 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="1209011"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM";
User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a
 git.gnome.org/pan2)
X-Spam-Checker-Version: SpamAssassin 4.0.0
Bytes: 2926
Lines: 27

Am Wed, 04 Dec 2024 14:31:12 +0100 schrieb WM:
> On 04.12.2024 11:33, FromTheRafters wrote:
>> WM formulated the question :
>>> On 03.12.2024 21:34, Jim Burns wrote:
>>>> On 12/3/2024 8:02 AM, WM wrote:
>>>
>>>>> E(1)∩E(2)∩...∩E(n) = E(n).
>>>>> Sequences which are identical in every term have identical limits.
>>>>
>>>> An empty intersection does not require
>>>>   an empty end.segment.
>>>
>>> A set of non-empty endsegments has a non-empty intersection. The
>>> reason is inclusion-monotony.
>> 
>> Conclusion not supported by facts.
> 
> In two sets A and B which are non-empty both but have an empty
> intersection, there must be at least two elements a and b which are in
> one endsegment but not in the other:
> a ∈ A but a ∉ B and b ∉ A but b ∈ B.
> Same with a set of endsegments. It can be divided into two sets for both
> of which the same is required.
Please expand how this works in the infinite case.

-- 
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.