| Deutsch English Français Italiano |
|
<8856b99c972dd6f6c3cb1faa2aabc6357ee695a1@i2pn2.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail From: joes <noreply@example.org> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Wed, 4 Dec 2024 15:00:58 -0000 (UTC) Organization: i2pn2 (i2pn.org) Message-ID: <8856b99c972dd6f6c3cb1faa2aabc6357ee695a1@i2pn2.org> References: <vg7cp8$9jka$1@dont-email.me> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me> <9bcc128b-dea8-4397-9963-45c93d1c14c7@att.net> <vimvgd$3vv5r$9@dont-email.me> <50c82b03-8aa1-492c-9af3-4cf2673d6516@att.net> <vip5mo$p0da$1@dont-email.me> <vipb6l$qfig$1@dont-email.me> <viplj0$t1f8$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Wed, 4 Dec 2024 15:00:58 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="1209011"; mail-complaints-to="usenet@i2pn2.org"; posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM"; User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2) X-Spam-Checker-Version: SpamAssassin 4.0.0 Bytes: 2926 Lines: 27 Am Wed, 04 Dec 2024 14:31:12 +0100 schrieb WM: > On 04.12.2024 11:33, FromTheRafters wrote: >> WM formulated the question : >>> On 03.12.2024 21:34, Jim Burns wrote: >>>> On 12/3/2024 8:02 AM, WM wrote: >>> >>>>> E(1)∩E(2)∩...∩E(n) = E(n). >>>>> Sequences which are identical in every term have identical limits. >>>> >>>> An empty intersection does not require >>>> an empty end.segment. >>> >>> A set of non-empty endsegments has a non-empty intersection. The >>> reason is inclusion-monotony. >> >> Conclusion not supported by facts. > > In two sets A and B which are non-empty both but have an empty > intersection, there must be at least two elements a and b which are in > one endsegment but not in the other: > a ∈ A but a ∉ B and b ∉ A but b ∈ B. > Same with a set of endsegments. It can be divided into two sets for both > of which the same is required. Please expand how this works in the infinite case. -- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math: It is not guaranteed that n+1 exists for every n.