Deutsch English Français Italiano |
<8cfbbf143df2be693e8a4ca79c9c7376cf086741.camel@gmail.com> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!feeds.phibee-telecom.net!2.eu.feeder.erje.net!feeder.erje.net!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: wij <wyniijj5@gmail.com> Newsgroups: comp.theory Subject: Re: Improved =?UTF-8?Q?=E2=84=99=E2=89=A0=E2=84=95=E2=84=99?= proof Date: Mon, 03 Jun 2024 23:04:09 +0800 Organization: A noiseless patient Spider Lines: 136 Message-ID: <8cfbbf143df2be693e8a4ca79c9c7376cf086741.camel@gmail.com> References: <108d3c553ccae9c7e6eeb1b8b1a85a52b8b0b78d.camel@gmail.com> <eed8bcaeee2337a7d842401b4bd6e2e409ddc213.camel@gmail.com> <9bf939d70b9ee022a01a7b1dd9eaa705da397d88.camel@gmail.com> MIME-Version: 1.0 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Injection-Date: Mon, 03 Jun 2024 17:04:11 +0200 (CEST) Injection-Info: dont-email.me; posting-host="53ecd3a08a774183dc348db4349cad0c"; logging-data="4135847"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19JOySd8E082NZWFMjurM9n" User-Agent: Evolution 3.50.2 (3.50.2-1.fc39) Cancel-Lock: sha1:hP9h4LxgnhIvh0secMFpCtf/PnY= In-Reply-To: <9bf939d70b9ee022a01a7b1dd9eaa705da397d88.camel@gmail.com> Bytes: 7776 On Mon, 2024-06-03 at 22:22 +0800, wij wrote: > The P!=3DNP proof should be completed. > The updated proof may even be shorter, intuitive and robust !!! > --------------------------------------------------------------- >=20 >=20 > This file is intended a proof that =E2=84=99=E2=89=A0=E2=84=95=E2=84=99. = The contents may be updated anytime. > https://sourceforge.net/projects/cscall/files/MisFiles/PNP-proof-en.txt/d= ownload >=20 > -------------------------------------------------------------------------= ---- > Algorithmic problem::=3D Problems that can be processed by asymptotic ana= lysis. >=20 > ANP::=3D Another NP is a set defined as {q| q is a description of the alg= orithmic > =C2=A0=C2=A0 decision problem that provides 1. A set of certificate data = C 2. A Ptime > =C2=A0=C2=A0 (Polynomial time) verification method v 3. The answer of q i= s 'yes' iff > =C2=A0=C2=A0 there exists a certificate c, c=E2=88=88C, such that v(c) is= true 4. q can be > =C2=A0=C2=A0 computed in at most O(2^|q|) steps. }. > =C2=A0=C2=A0 More precisely, ANP is the set of problems that can be solve= d by the=20 > =C2=A0=C2=A0 following pseudo-C/C++ program temp_anp(q): >=20 > =C2=A0=C2=A0 bool temp_anp(Problem q) {=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2= =A0=C2=A0=C2=A0=C2=A0=C2=A0 // Problem: Description of the problem > =C2=A0=C2=A0=C2=A0=C2=A0 Certificate c,begin,end;=C2=A0=C2=A0=C2=A0=C2=A0= =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 // Certificate data can be accessed by > =C2=A0=C2=A0=C2=A0=C2=A0 begin=3D get_begin_certificate(q);=C2=A0=C2=A0 /= /=C2=A0=C2=A0 iteration, at least. > =C2=A0=C2=A0=C2=A0=C2=A0 end=C2=A0 =3D get_end_certificate(q); > =C2=A0=C2=A0=C2=A0=C2=A0 for(c=3Dbegin; c!=3Dend; c=3Dnext(c)) {=C2=A0 //= O(2^|n|) loop (see Note2) > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 if(v(c)) return true;=C2=A0=C2=A0=C2= =A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 // v:Certificate->{true= ,false}, Ptime > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0= =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2= =A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0= =C2=A0=C2=A0 //=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 verification function. > =C2=A0=C2=A0=C2=A0=C2=A0 } > =C2=A0=C2=A0=C2=A0=C2=A0 return false; > =C2=A0=C2=A0 } >=20 > =C2=A0=C2=A0 Note1: Relative to the Turing Machine language for =E2=84=95= =E2=84=99, the reason using > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 pseudo-C/C++ is that 1.C= -code (almost all high level programming > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 language not involving s= pecial hardware features) and TM language are > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 computationally intercha= ngeable. 2.It describes the problem more > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 clearly (but not always)= 3.The result 'false' is visible 4. =E2=84=95=E2=84=99 > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 definition does not say = the certificate C and the verication v are > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 given, fixed arguments. = In ANP, v(c) is explicitly spedified a Ptime > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 function 5.Easier for ma= chine aided verification. >=20 > =C2=A0=C2=A0 Note2: The semantics of the for loop in temp_anp(q) includes= nested loops for > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 sets like C=3DC1=C3=97C2= =C3=97C3=C3=97... >=20 > Polynomial time procedure::=3D (or polynomial time function) A procedure = composed > =C2=A0=C2=A0 of sequential execution of O(P) number of fixed-time procedu= res. > =C2=A0=C2=A0 (Therefore, O(P) number of sequential Ptime procedure is equ= ivalent to a > =C2=A0=C2=A0 single Ptime procedure) >=20 > Size-1-subproblem::=3D The problem whose size of input is less by one tha= n that > =C2=A0=C2=A0 of the orginal problem. >=20 > Theorem: ANP problem can be divided into two size-1-subproblems. > =C2=A0=C2=A0 Proof: By spliting the certificate as follow: > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 bool temp_anp(Prob= lem q) { > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 if(q.c= ertificate().size()<Thresh) { // Thresh is a small constant > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0= =C2=A0 return solve_thresh_case(q); > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 } > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 Proble= m q1,q2; > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 split_= certificate(q,q1,q2);=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 // split th= e certificate in q > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 return= temp_anp(q1) || temp_anp(q2); // to form q1,q2 > =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 } >=20 > Assume solving some ANP problem by temp_anp(q) whose size-1-subproblem > temp_anp(q1) is solved, then the remaining task has one more information = I > (i.e. whatever the computaion of temp_anp(q1) can provide) to reduce the > workload of solving the remaining task, and defined as solve_remain(q2,I)= .. > If =E2=84=99=3D=E2=84=95=E2=84=99, which means the remaining task can be = completed independently in Ptime > without I. In this sitution, solve_remain(q2,I) is equivalent to temp_anp= (q2). > But the complexity of computation is W(|q|)=3DW(|q|-1)+ W(|q|-1)=3D 2^(|q= |-1)*W(1), > a O(2^N) level of complexity contradicting he assumed Ptime. Therefore, = =E2=84=99=E2=89=A0=E2=84=95=E2=84=99. > -------------------------------------------------------------------------= ---- A typo in the last paragraph: Assume solving some =E2=84=95=E2=84=99=E2=84=82 problem by temp_anp(q) whos= e size-1-subproblem temp_anp(q1) is solved, then the remaining task has one more information I (i.e. whatever the computaion of temp_anp(q1) can provide) to reduce the workload of solving the remaining task, and defined as solve_remain(q2,I). If =E2=84=99=3D=E2=84=95=E2=84=99, which means the remaining task can be co= mpleted independently in Ptime without I. In this sitution, solve_remain(q2,I) is equivalent to temp_anp(q= 2). But the complexity of computation is W(|q|)=3DW(|q|-1)+ W(|q|-1)=3D 2^(|q|-= 1)*W(1), a O(2^N) level of complexity contradicting the assumed Ptime. Therefore, = =E2=84=99=E2=89=A0=E2=84=95=E2=84=99.