Deutsch English Français Italiano |
<9eaeab963bd5f3825f745c8990c9901a690f9eba@i2pn2.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.nk.ca!rocksolid2!i2pn2.org!.POSTED!not-for-mail From: joes <noreply@example.org> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Mon, 2 Dec 2024 19:06:44 -0000 (UTC) Organization: i2pn2 (i2pn.org) Message-ID: <9eaeab963bd5f3825f745c8990c9901a690f9eba@i2pn2.org> References: <vg7cp8$9jka$1@dont-email.me> <vi41rg$3cj8q$1@dont-email.me> <d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me> <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me> <vikkom$3ds36$1@dont-email.me> <vikoi8$3e7kd$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Mon, 2 Dec 2024 19:06:44 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="948213"; mail-complaints-to="usenet@i2pn2.org"; posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM"; User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2) X-Spam-Checker-Version: SpamAssassin 4.0.0 Bytes: 2657 Lines: 18 Am Mon, 02 Dec 2024 17:51:22 +0100 schrieb WM: > On 02.12.2024 16:46, FromTheRafters wrote: >> WM wrote : > >>> E(1), E(2), E(3), ... >>> and E(1), E(1)∩E(2), E(1)∩E(2)∩E(3), ... >>> are identical for every n and in the limit because E(1)∩E(2)∩...∩E(n) >>> = E(n). >> Non sequitur. That which is true for finite sequences is not >> necessarily true for infinite sequences. > As easily can be obtaied from the above it is necessarily true that up > to every term and therefore also in the limit the sequences of > endsegments and of intersections are identical. Every contrary opinion > is matheology, outside of mathematics. What is the limit? -- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math: It is not guaranteed that n+1 exists for every n.