| Deutsch English Français Italiano |
|
<BemyjeEyCW-MjW40qw4k1u6D-7E@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.mixmin.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp Message-ID: <BemyjeEyCW-MjW40qw4k1u6D-7E@jntp> JNTP-Route: nemoweb.net JNTP-DataType: Article Subject: Re: Equation complexe References: <oAvE_mEWK82aUJOdwpGna1Rzs1U@jntp> <vplf03$26m33$2@dont-email.me> <phaAQGQzp-zUFaCH1je-PMrkpYE@jntp> <vplkro$27sv3$1@dont-email.me> Newsgroups: sci.math JNTP-HashClient: -0PPGr7xV9OURw-0ZQJFF2tYqJY JNTP-ThreadID: O5CXkAcAe1D7_dx2s1eq7KbScfI JNTP-Uri: https://www.nemoweb.net/?DataID=BemyjeEyCW-MjW40qw4k1u6D-7E@jntp User-Agent: Nemo/1.0 JNTP-OriginServer: nemoweb.net Date: Wed, 26 Feb 25 00:11:36 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36 Injection-Info: nemoweb.net; posting-host="0622b338f00df6c7e122ad5f6ee90645acf995aa"; logging-data="2025-02-26T00:11:36Z/9222242"; posting-account="4@nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: Richard Hachel <r.hachel@tiscali.fr> Bytes: 3382 Lines: 63 Le 26/02/2025 à 00:48, "Chris M. Thomasson" a écrit : > On 2/25/2025 2:20 PM, Richard Hachel wrote: >> Le 25/02/2025 à 23:08, "Chris M. Thomasson" a écrit : >>> On 2/25/2025 6:23 AM, Richard Hachel wrote: >>>> x^4=-81 >>>> >>>> What is x? > [...] >> x=-1.873444 > > To the 13'th power with higher precision: > > roots[0] = (1.01898,0.251156) > roots[1] = (0.7855438,0.6959311) > roots[2] = (0.3721492,0.9812768) > roots[3] = (-0.1265003,1.041824) > roots[4] = (-0.5961701,0.8637015) > roots[5] = (-0.9292645,0.4877156) > roots[6] = (-1.049476,5.945845e-16) > roots[7] = (-0.9292645,-0.4877156) > roots[8] = (-0.5961701,-0.8637015) > roots[9] = (-0.1265003,-1.041824) > roots[10] = (0.3721492,-0.9812768) > roots[11] = (0.7855438,-0.6959311) > roots[12] = (1.01898,-0.251156) > > raised[0] = (-1.873444,2.294307e-16) > raised[1] = (-1.873444,4.016197e-15) > raised[2] = (-1.873444,4.475059e-15) > raised[3] = (-1.873444,1.606015e-15) > raised[4] = (-1.873444,2.064877e-15) > raised[5] = (-1.873444,9.179548e-15) > raised[6] = (-1.873444,9.63841e-15) > raised[7] = (-1.873444,4.132072e-15) > raised[8] = (-1.873444,4.590934e-15) > raised[9] = (-1.873444,1.170561e-14) > raised[10] = (-1.873444,2.214818e-14) > raised[11] = (-1.873444,1.262333e-14) > raised[12] = (-1.873444,2.306591e-14) I think that for the moment, we are making things terribly complicated. If I ask you the cube root of 27? Are you going to make a computer program? Why make a computer program if I ask you the fourth root of -81? The answer is simple and obvious. x=3i. All these misunderstandings come from the fact that no clear and universally usable definition of the imaginary number i has ever been given. Against all expectations, in analytical mathematics, i is an imaginary unit such that, for all x, i^x=-1. We see that saying that i²=-1 is completely legal. Or that sqrt(i)=i^(1/2)=-1. Certainly. But we also see that (i²)² is not equal to 1, and that those who believe it are corrupting themselves. R.H.