Warning: mysqli::__construct(): (HY000/1203): User howardkn already has more than 'max_user_connections' active connections in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\includes\artfuncs.php on line 21
Failed to connect to MySQL: (1203) User howardkn already has more than 'max_user_connections' active connections
Warning: mysqli::query(): Couldn't fetch mysqli in D:\Inetpub\vhosts\howardknight.net\al.howardknight.net\index.php on line 66
Article <CTS2_7LF_Yo7VgrVVP3X6RrYR8g@jntp>
Deutsch   English   Français   Italiano  
<CTS2_7LF_Yo7VgrVVP3X6RrYR8g@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!3.eu.feeder.erje.net!feeder.erje.net!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp
Message-ID: <CTS2_7LF_Yo7VgrVVP3X6RrYR8g@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: =?UTF-8?Q?R=C3=A9solution=20du=20probl=C3=A8me=20pos=C3=A9?=
References: <VTMItxncAEYELeWXOtGSe5FrxHU@jntp> <v5eao5$1hiil$1@dont-email.me>
Newsgroups: fr.sci.maths
JNTP-HashClient: WZj-XZ1TGEWblHWhnbCwcQWk_74
JNTP-ThreadID: YpSMaYU8zs1oRMOgtTGbPV26LfM
JNTP-Uri: http://news2.nemoweb.net/?DataID=CTS2_7LF_Yo7VgrVVP3X6RrYR8g@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Mon, 01 Jul 24 12:29:14 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="e8cbf2474b472b9bb79db3dccb6a856bc1d05409"; logging-data="2024-07-01T12:29:14Z/8927056"; posting-account="4@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: Richard Hachel <r.hachel@wanadou.fr>
Bytes: 1780
Lines: 29

Le 25/06/2024 à 13:47, efji a écrit :
> Le 25/06/2024 à 13:36, Richard Hachel a écrit :

> Et le gros malin il fait comment pour résoudre
> 
> sqrt(3x+7)+sqrt(x+2)=2

 Faaaaacile!

 sqrt(3x+7)=2-sqrt(x-2)

 3x+7=[2-sqrt(x+2)]²

 3x+7=4-4sqrt(x+2)+(x+2)

 2x+1=-4sqrt(x+2)

 4x²+4x+1=16x+32

 4x²-12x-31=0

 Deux racines x'=-2.6622775   x"=4.6622775

 Seule le première racine est compatible avec x<-2

R.H.