Deutsch English Français Italiano |
<EDTik58BSryyo1wKPWE-73oPOt8@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp Message-ID: <EDTik58BSryyo1wKPWE-73oPOt8@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: how References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <v0geub$2a19r$3@i2pn2.org> <bbeK5eCmOQ6N-LVr1uyjOk8Yyng@jntp> <v0gqsr$2a19s$4@i2pn2.org> <ZqDu6OJ6PIxaTyzn9byQvORrwfY@jntp> <v0jciu$2djof$1@i2pn2.org> <_yFJcrVH3mCQISnbXb4RkUGQ63Q@jntp> <v0rsgv$2m1ng$1@i2pn2.org> <GOKkyslvoYcnnXTkWY_rTK0n2O0@jntp> <v149ef$c30$2@i2pn2.org> Newsgroups: sci.math JNTP-HashClient: RKr7atAOqmxH-Jge7vY0Jdq5JQo JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY JNTP-Uri: http://news2.nemoweb.net/?DataID=EDTik58BSryyo1wKPWE-73oPOt8@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Mon, 06 May 24 20:20:58 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="7a19405b4245f47946ffce65063ceb09f86be43b"; logging-data="2024-05-06T20:20:58Z/8846578"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2316 Lines: 25 Le 04/05/2024 à 05:18, Richard Damon a écrit : > On 5/3/24 9:21 AM, WM wrote: >> Every findable number has ℵo successors. ==> Not all can be found. >> All natural numbers have no successors. ==> There are more. > > So, what is your actual definition of a "findable" number? A number that can be put in trichotomy with its neighbours. > > How does that definition actually differ IN ITS DEFINITION from the > definition of the Natural Numbers? The set of all natural numbers consists mainly of dark numbers. All numbers which can be put in trichotomy belong to a finite set ∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo which is followed by an infinite set the numbers of whch cannot be distinguished and which can only be manipulated collectively. |ℕ \ {1, 2, 3, ...}| = 0 Regards, WM