Deutsch English Français Italiano |
<F6pqEi9Vg1YMcYTcIPQNs6NU_vI@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!3.eu.feeder.erje.net!feeder.erje.net!fdn.fr!usenet-fr.net!news.gegeweb.eu!gegeweb.org!pasdenom.info!from-devjntp Message-ID: <F6pqEi9Vg1YMcYTcIPQNs6NU_vI@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: Replacement of Cardinality References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp> <f3089a55-39f4-4df1-a525-58e21342ced8@att.net> <P04FAosjolyjDfgV0JPXWx1mF6o@jntp> <40165884-df8f-4614-8644-9161d72fd1cb@att.net> <-qUZ96ARwcjh9QPfyWRnijjNwoY@jntp> <6b837540-3d9a-4b8e-9a70-88d52e81a1a4@att.net> <xQQT0K_Q_k2FbMcCUXF8j3CEg84@jntp> <9822f5da-d61e-44ba-9d70-2850da971b42@att.net> <p36L63dXamDAkHDhkZhDKqx-h-o@jntp> <d8bbe664-a601-4590-9a7f-d5312b4dae54@att.net> Newsgroups: sci.logic,sci.math JNTP-HashClient: tYn2ted2M5bCHD3epOYIk8bRy7Q JNTP-ThreadID: KFm3f7lT2HjaTSiMfnv5xqZoSBw JNTP-Uri: http://news2.nemoweb.net/?DataID=F6pqEi9Vg1YMcYTcIPQNs6NU_vI@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Sat, 03 Aug 24 14:23:52 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="82b75c1d0a83e677ff646b52485f72f8b23749df"; logging-data="2024-08-03T14:23:52Z/8974183"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2560 Lines: 24 Le 02/08/2024 à 19:06, Jim Burns a écrit : > (0,x] inherits from its superset (0,1] properties by which, > for ⅟ℕᶠⁱⁿ∩(0,x] finite.unit.fractions in (0,x] > each non.{}.subset is maximummed, and > each finite.unit.fraction is down.stepped, and > each finite.unit.fraction in is non.max.up.stepped. > > Therefore, > the finite.unit.fractions in ⅟ℕᶠⁱⁿ∩(0,x] are ℵ₀.many. > > ∀ᴿx > 0: NUFᶠⁱⁿ(x) = ℵ₀ I recognized lately that you use the wrong definition of NUF. Here is the correct definition: There exist NUF(x) unit fractions u, such that for all y >= x: u < y. Note that the order is ∃ u ∀ y. NUF(x) = ℵ₀ for all x > 0 is wrong. NUF(x) = 1 for all x > 0 already is wrong since there is no unit fraction smaller than all unit fractions. ℵ₀ unit fractions need ℵ₀*2ℵ₀ points above zero. Regards, WM