Deutsch English Français Italiano |
<IJSdnZK-R6fFgx37nZ2dnZfqnPGdnZ2d@giganews.com> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!local-2.nntp.ord.giganews.com!local-4.nntp.ord.giganews.com!Xl.tags.giganews.com!local-1.nntp.ord.giganews.com!news.giganews.com.POSTED!not-for-mail NNTP-Posting-Date: Sat, 29 Jun 2024 14:46:48 +0000 Subject: Re: Einstein's second mass-energy formula m'/m = e/c^2 Newsgroups: sci.physics.relativity References: <eN6cnRy1afc0GuL7nZ2dnZfqnPednZ2d@giganews.com> <KDKdnarg5JDvFOL7nZ2dnZfqnPiWy52d@giganews.com> From: Ross Finlayson <ross.a.finlayson@gmail.com> Date: Sat, 29 Jun 2024 07:46:47 -0700 User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Thunderbird/38.6.0 MIME-Version: 1.0 In-Reply-To: <KDKdnarg5JDvFOL7nZ2dnZfqnPiWy52d@giganews.com> Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 7bit Message-ID: <IJSdnZK-R6fFgx37nZ2dnZfqnPGdnZ2d@giganews.com> Lines: 68 X-Usenet-Provider: http://www.giganews.com X-Trace: sv3-siQPy9YuP/l/ymy3y/eGrOYSiNidKzyPIBfxF5/6s5u84ZemMpSEY0p7UMJlc9W8L5lHjzlrnUDxeFR!um8WkwKX5kZqs9juHpwpCFUJnVD1Ne+dN14kAsHYK/LZW7F/EQKzyINXSLai/2/xVdtWadVLsJ2M!Sw== X-Complaints-To: abuse@giganews.com X-DMCA-Notifications: http://www.giganews.com/info/dmca.html X-Abuse-and-DMCA-Info: Please be sure to forward a copy of ALL headers X-Abuse-and-DMCA-Info: Otherwise we will be unable to process your complaint properly X-Postfilter: 1.3.40 Bytes: 3991 On 06/28/2024 09:11 PM, Ross Finlayson wrote: > On 06/28/2024 09:04 PM, Ross Finlayson wrote: >> In "Out of My Later Years", Einstein's introduces another >> mass-energy equivalence formula after kinetic terms. >> >> So if it's sort of Einstein's second-most famous formula, >> why hasn't anybody heard of it? >> >> m'/m = e/c^2 >> >> It introduces that the terms in the rotational, make >> for that mass-energy equivalence only sits in the >> rotational setting, among all the other usual terms. >> >> It's introduced in a brief note near the end of >> the material on science in Einstein's "Out of My >> Later Years". >> >> It really makes for a sort of way to make it so >> that the space-contraction results real while >> also that the linear is rather Galilean, while >> still fulfilling all the usual derivations, if >> not necessarily the rhetoric or intuitions, >> yet very intuitionistically while all formally. >> >> >> It's pretty great I wonder why it's not well-known. >> > > https://en.wikipedia.org/wiki/Lorentz_factor > > These ideas in "Lorentz factor" in accommodating what are the "fictitious forces", which are real, and making for why there is boost addition with regards to addition formulae in what are continuous milieux, often harkens to the "Larmor forces" and "Larmor formula", "Lorentz-Larmor". Then, "Lorentz factor" also reflects that in the "Lorentz transformations", that it results about differential analysis being about constants vis-a-vis implicits, of course about metrics and norms of fields and gauges, helping explain why Einstein's theory by itself, and Feynman's theories themselves, have the _forms_ of the coordinate-free according to tensors, or the quantum amplitudes according to discretization, yet as well these have continuous _forms_, that "Lorentz factor" has all the components of "Lorentz transform" broken out as variously projective, for various purposes, here then mostly for "space-contraction" and "FitzGerald", then that FitzGerald, Larmor, Heaviside, and Faraday, are close to Maxwell. Einstein: in his "Out of My Later Years", which is great, has that he _does_ make for that SR is local, then that GR being fundamental thusly, then that m'/m = e/c^2, is a quite _profound_ connection of the objects of Einstein's theory, both equipping the rotational setting for mass-energy equivalency, and, detaching it from the Galilean. So, Einstein's second mass-energy equivalency relation, and the relation to Einstein's bridges about the centrally symmetrical, with how he left his board, are key concepts connecting the classical and the superclassical, and showing how mathematically it's a thing.