Deutsch   English   Français   Italiano  
<JZpqdwwOwjdh5WP3Om6XikdFFoE@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!npeer.as286.net!npeer-ng0.as286.net!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp
Message-ID: <JZpqdwwOwjdh5WP3Om6XikdFFoE@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: Does the number of nines =?UTF-8?Q?increase=3F?=
References: <tJf9P9dALSN4l2XH5vdqPbXSA7o@jntp> <9f744198-219c-481d-970d-0ba4c264f090@att.net> <4RWgJcGMg1Zagk6yT04mcwxdZH4@jntp>
 <59961718-bd36-46df-801a-4f977fcc05cf@att.net> <v5hnrl$29b21$3@dont-email.me>
 <a21eede6-2b9f-44f0-8732-32bd92700dfb@att.net> <eZZGYbe53s6yBDBqGuTMM_Z1y7A@jntp> <v5lspm$1bs52$2@i2pn2.org>
 <HlcnRXFQ42qMfnJgEw40TN7tXjI@jntp> <v640ke$297u9$2@dont-email.me>
Newsgroups: sci.math
JNTP-HashClient: X2n6veDrFohr9fezHx8oDoLIme4
JNTP-ThreadID: 0JbXgoRqYUfKvvWhEBWZVJgnda4
JNTP-Uri: http://news2.nemoweb.net/?DataID=JZpqdwwOwjdh5WP3Om6XikdFFoE@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Wed, 03 Jul 24 20:05:48 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="25d5a506365fc8262443ce1bd287e5d0233c1bef"; logging-data="2024-07-03T20:05:48Z/8930812"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: WM <wolfgang.mueckenheim@tha.de>
Bytes: 2444
Lines: 25

Le 03/07/2024 à 19:09, Moebius a écrit :
> Am 28.06.2024 um 15:55 schrieb WM:
> 
> 
>> in {0, 1, 2, 3, ..., ω} before ω there is a natural number.
> 
> Ja, "before ω" (im Sinne von kleiner) sind unendlich viele natural 
> numbers, nämlich die natürlichen Zahlen 0, 1, 2, 3, ... usw.
> 
> Es gibt aber keine natürliche Zahl die "unmittelbar vor" ω steht.

You cannot recognize it. It is existing but dark.

> Zu jeder 
> natürlichen Zahl n gibt es eine natürliche Zahl m (beispielsweise n+1), 
> so dass n < m < ω gilt.

For every visible natural number this is true. 

Like ∀x > 0: NUF(x) = ℵo is true. But this truth proves the existence 
of dark numbers, because between every such x and 0 there must lie ℵo 
unit fractions and ℵo finite distances between them.

Regards, WM