| Deutsch English Français Italiano |
|
<LaKBDZjh_ayaMkDsulyY_Nw12Gs@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!feeds.phibee-telecom.net!2.eu.feeder.erje.net!feeder.erje.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp Message-ID: <LaKBDZjh_ayaMkDsulyY_Nw12Gs@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: how References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <9f8cd558-96b5-464a-8203-807b13fc565e@att.net> <y-weeuspdPzPjrZczT9yOk8IHaA@jntp> <0e7906d7-fa17-44c1-b45c-4e08ab8fbb89@att.net> <6zyq9bN8OQAtP6OyXIOtCtWzEjk@jntp> <dbd0508f-48b8-4931-b19a-0e99e260e98c@att.net> <zCqM5B_nQZ0GpOh02ANlr269OcY@jntp> <8cb21662-b0d8-4944-9ccd-70b7f3b8992b@att.net> <rywoec1URQSuxKygTOHYU2lkZSI@jntp> <6b388f9a-9309-41a1-b445-39bbb73b020d@att.net> Newsgroups: sci.math JNTP-HashClient: ht9KToIqxFCIjWWTEMxAiye6kNs JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY JNTP-Uri: http://news2.nemoweb.net/?DataID=LaKBDZjh_ayaMkDsulyY_Nw12Gs@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Sun, 26 May 24 18:53:22 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="3bed57af5dfb4b4ed53747abab32268f60035876"; logging-data="2024-05-26T18:53:22Z/8874791"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 3073 Lines: 47 Le 23/05/2024 à 21:52, Jim Burns a écrit : > On 5/23/2024 8:10 AM, WM wrote: >> WM: >> Between two unit fractions >> there are ℵo real numbers x. > > Between any two ⅟m < ⅟n > there are more.than.any.k<ℵ₀ real.points Even between 0 and any 1/n there are at least ℵ₀ real points. >> I have shown the way: Dark numbers. > > Darkᵂᴹ numbers in ℚ and between splits of ℚ > which are between 0 and all unit fractions > do not exist, neither darklyᵂᴹ nor visiblyᵂᴹ What is closer to zero, a unit fraction or a not unit fraction? > > We can know that they don't exist by starting with > that description and then making not.first.false > claims until we get to a contradiction. The contradiction is ∀x ∈ (0, 1]: NUF(x) = ℵo because the unit fractions are x ∈ (0, 1]. They cannot sit at a single point x, hence the statememt is false. > > Also true: > There is no x > 0 smaller than all unit fractions. That implies that there is a unit fractions smaller than all other x > 0. > >> and even in accordance with >> For any unit fraction there are ℵ₀ smaller real x > 0. > > Also true: > For any x > 0 there are ℵ₀ smaller unit fractions. Impossible because the unit fractions cannot be smaller than themselves. > >> Note that >> points on the real axis are fixed and >> not subject to quantifier nonsense. Regards, WM