Deutsch   English   Français   Italiano  
<LaKBDZjh_ayaMkDsulyY_Nw12Gs@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!feeds.phibee-telecom.net!2.eu.feeder.erje.net!feeder.erje.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp
Message-ID: <LaKBDZjh_ayaMkDsulyY_Nw12Gs@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: how
References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <9f8cd558-96b5-464a-8203-807b13fc565e@att.net> <y-weeuspdPzPjrZczT9yOk8IHaA@jntp>
 <0e7906d7-fa17-44c1-b45c-4e08ab8fbb89@att.net> <6zyq9bN8OQAtP6OyXIOtCtWzEjk@jntp>
 <dbd0508f-48b8-4931-b19a-0e99e260e98c@att.net> <zCqM5B_nQZ0GpOh02ANlr269OcY@jntp>
 <8cb21662-b0d8-4944-9ccd-70b7f3b8992b@att.net> <rywoec1URQSuxKygTOHYU2lkZSI@jntp>
 <6b388f9a-9309-41a1-b445-39bbb73b020d@att.net>
Newsgroups: sci.math
JNTP-HashClient: ht9KToIqxFCIjWWTEMxAiye6kNs
JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY
JNTP-Uri: http://news2.nemoweb.net/?DataID=LaKBDZjh_ayaMkDsulyY_Nw12Gs@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Sun, 26 May 24 18:53:22 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="3bed57af5dfb4b4ed53747abab32268f60035876"; logging-data="2024-05-26T18:53:22Z/8874791"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: WM <wolfgang.mueckenheim@tha.de>
Bytes: 3073
Lines: 47

Le 23/05/2024 à 21:52, Jim Burns a écrit :
> On 5/23/2024 8:10 AM, WM wrote:

>> WM:
>> Between two unit fractions
>> there are ℵo real numbers x.
> 
> Between any two ⅟m < ⅟n
> there are more.than.any.k<ℵ₀ real.points

Even between 0 and any 1/n there are at least ℵ₀ real points. 

>> I have shown the way: Dark numbers.
> 
> Darkᵂᴹ numbers in ℚ and between splits of ℚ
> which are between 0 and all unit fractions
> do not exist, neither darklyᵂᴹ nor visiblyᵂᴹ

What is closer to zero, a unit fraction or a not unit fraction?
> 
> We can know that they don't exist by starting with
> that description and then making not.first.false
> claims until we get to a contradiction.

The contradiction is ∀x ∈ (0, 1]: NUF(x) = ℵo because the unit 
fractions are x ∈ (0, 1].
They cannot sit at a single point x, hence the statememt is false.
> 

> Also true:
> There is no x > 0 smaller than all unit fractions.

That implies that there is a unit fractions smaller than all other x > 0.
> 
>> and even in accordance with
>> For any unit fraction there are ℵ₀ smaller real x > 0.
> 
> Also true:
> For any x > 0 there are ℵ₀ smaller unit fractions.

Impossible because the unit fractions cannot be smaller than themselves.
> 
>> Note that
>> points on the real axis are fixed and
>> not subject to quantifier nonsense.

Regards, WM