Deutsch English Français Italiano |
<OBiX0e4c1u4--WEUEZ3XmUjS79Y@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!feeds.phibee-telecom.net!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp Message-ID: <OBiX0e4c1u4--WEUEZ3XmUjS79Y@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: [SR] Usefulness of real velocities in accelerated relativistic frames of reference. References: <h-QIa4vokaI12HpxgnrgFM9XOF0@jntp> <usq9rs$1lobo$1@i2pn2.org> <1bIiiMt-l_wW2d7hcr84gCA75z0@jntp> <ust42t$1pilc$1@i2pn2.org> <DIWc6N6c1kt90JlXKL-IW0GWK0Y@jntp> <usv02b$1rq23$1@i2pn2.org> Newsgroups: sci.physics.relativity JNTP-HashClient: vSukt69c9-enmt6XPh6o0zZnxEM JNTP-ThreadID: 1cetg9ltuC_-ANX4baQoDcFLtzU JNTP-Uri: http://news2.nemoweb.net/?DataID=OBiX0e4c1u4--WEUEZ3XmUjS79Y@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Thu, 14 Mar 24 16:18:32 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="8e9c64a29b0e5dc904f270dd7ef68fe2b6d8e460"; logging-data="2024-03-14T16:18:32Z/8773706"; posting-account="4@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: Richard Hachel <r.hachel@tiscali.fr> Bytes: 3156 Lines: 64 Le 14/03/2024 à 15:02, "Paul B. Andersen" a écrit : > Den 14.03.2024 03:09, skrev Richard Hachel: > Contradicting fact: > ------------------- > So this is wrong. > You can see the correct derivation here: > https://paulba.no/pdf/TwinsByMetric.pdf > See chapter 2.3, equation (15) > > Vr(t) = a⋅t/√(1+(a⋅t/c)²) > > Note that: > Vr → a⋅t when t → 0 > Vr → c when t → ∞ > > > Your problem is that you do not understand the difference > between proper acceleration of the rocket, and the rocket's > coordinate acceleration in the inertial frame. > > If A is the coordinate acceleration in K, we have: > > A = dVr/dt = a/(√(1+(a⋅t/c)²))³ > > Note that: > A → a when t → 0 > A → 0 when t → ∞ > > So Vr(t) = ∫(from 0 to t)A⋅dt = a⋅t/√(1+(a⋅t/c)²) > > You claim: > According to SR is the average speed of the rocket Vm(t) = Vr(t)/2 > ===================================================================== > > Contradicting fact: > ------------------- > This is wrong. > > Vr(t) = a⋅t/√(1+(a⋅t/c)²) > > The average speed Vm at the time t is: > Vm = (integral from t=0 to t=t of Vr(t)dt)/t > Vm = c²⋅(√(1+(a⋅t/c)²)-1)/a⋅t > > Note that: > Vm → a⋅t/2 when t → 0 > Vm → c when t → ∞ > > So: > Vm/Vr → 1/2 when t → 0 > rm/Vr → 1 when t → ∞ > > So for any t > 0 Vm > Vr/2 > > It is not possible to make SR predict anything else! > ==================================================== You don't understand anything I'm telling you... In these conditions, it is very difficult to discuss. R.H.