Deutsch   English   Français   Italiano  
<UMzq2D4JrBFmHiWT8a6U533RZeg@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!feeds.phibee-telecom.net!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp
Message-ID: <UMzq2D4JrBFmHiWT8a6U533RZeg@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: Replacement of Cardinality
References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp> <b0XFTJvTommasLo9Ns10OeW0TN0@jntp> <75e2ce0e-7df8-4266-968b-9c58e4140b03@att.net>
 <RCAlRuRy_RKB_tYItKJs7fNcIs0@jntp> <35d8c0a1-dab3-4c15-8f24-068e8200cb07@att.net> <sglIw8p3PCeHivaAhg-7IVZCN4A@jntp>
 <fcd3f5f1-fd6e-44ac-823d-fa567d5fb9ba@att.net> <t_rVz7RU7M3aHZTB1TQJS59Ez0I@jntp>
 <45ad1007-b1a7-49d0-a650-048f02738226@att.net> <v9lc9n$10teg$3@dont-email.me>
Newsgroups: sci.logic,sci.math
JNTP-HashClient: PX1KjY5L4z_D8VvPpF26NLDB3mg
JNTP-ThreadID: KFm3f7lT2HjaTSiMfnv5xqZoSBw
JNTP-Uri: http://news2.nemoweb.net/?DataID=UMzq2D4JrBFmHiWT8a6U533RZeg@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Fri, 16 Aug 24 16:45:29 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="82b75c1d0a83e677ff646b52485f72f8b23749df"; logging-data="2024-08-16T16:45:29Z/8989150"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: WM <wolfgang.mueckenheim@tha.de>
Bytes: 2457
Lines: 17

Le 15/08/2024 à 19:01, Moebius a écrit :

> Assume that there is an x e IR such that NUF(x) = 1. Let x0 e IR such 
> that NUF(x0) = 1. This means that there is exactly one unit fraction u 
> such that u < x0. Let's call this unit fraction u0. Then (by definition) 
> there is a (actually exactly one) natural number n such that u0 = 1/n. 
> Let n0 e IN such that u0 = 1/n0. But then (again by definition) 1/(n0 + 
> 1) is an unit fraction which is smaller than u0 and hence smaller than 
> x0. Hence NUF(x0) > 1. Contradiction!

We can reduce the interval (0, x) c [0, 1] such that x converges to 0.
Then the number of unit fractions diminishes. Finally there is none 
remaining. But never, for no interval (0, x), more than one unit fraction 
is lost. Therefore there is only one last unit fraction.
 
Regards, WM