| Deutsch English Français Italiano |
|
<UMzq2D4JrBFmHiWT8a6U533RZeg@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!feeds.phibee-telecom.net!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp Message-ID: <UMzq2D4JrBFmHiWT8a6U533RZeg@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: Replacement of Cardinality References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp> <b0XFTJvTommasLo9Ns10OeW0TN0@jntp> <75e2ce0e-7df8-4266-968b-9c58e4140b03@att.net> <RCAlRuRy_RKB_tYItKJs7fNcIs0@jntp> <35d8c0a1-dab3-4c15-8f24-068e8200cb07@att.net> <sglIw8p3PCeHivaAhg-7IVZCN4A@jntp> <fcd3f5f1-fd6e-44ac-823d-fa567d5fb9ba@att.net> <t_rVz7RU7M3aHZTB1TQJS59Ez0I@jntp> <45ad1007-b1a7-49d0-a650-048f02738226@att.net> <v9lc9n$10teg$3@dont-email.me> Newsgroups: sci.logic,sci.math JNTP-HashClient: PX1KjY5L4z_D8VvPpF26NLDB3mg JNTP-ThreadID: KFm3f7lT2HjaTSiMfnv5xqZoSBw JNTP-Uri: http://news2.nemoweb.net/?DataID=UMzq2D4JrBFmHiWT8a6U533RZeg@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Fri, 16 Aug 24 16:45:29 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="82b75c1d0a83e677ff646b52485f72f8b23749df"; logging-data="2024-08-16T16:45:29Z/8989150"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2457 Lines: 17 Le 15/08/2024 à 19:01, Moebius a écrit : > Assume that there is an x e IR such that NUF(x) = 1. Let x0 e IR such > that NUF(x0) = 1. This means that there is exactly one unit fraction u > such that u < x0. Let's call this unit fraction u0. Then (by definition) > there is a (actually exactly one) natural number n such that u0 = 1/n. > Let n0 e IN such that u0 = 1/n0. But then (again by definition) 1/(n0 + > 1) is an unit fraction which is smaller than u0 and hence smaller than > x0. Hence NUF(x0) > 1. Contradiction! We can reduce the interval (0, x) c [0, 1] such that x converges to 0. Then the number of unit fractions diminishes. Finally there is none remaining. But never, for no interval (0, x), more than one unit fraction is lost. Therefore there is only one last unit fraction. Regards, WM