Deutsch   English   Français   Italiano  
<VMFIilIzgkSEOgy4b8XVfnxCsLc@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.nobody.at!news.mb-net.net!open-news-network.org!news.gegeweb.eu!gegeweb.org!pasdenom.info!from-devjntp
Message-ID: <VMFIilIzgkSEOgy4b8XVfnxCsLc@jntp>
JNTP-Route: nemoweb.net
JNTP-DataType: Article
Subject: Re: Equation complexe
References: <oAvE_mEWK82aUJOdwpGna1Rzs1U@jntp> <YEkr142e3Iw10sNTl94yHf-u1kY@jntp> <vpm4bt$2drq9$1@dont-email.me>
 <vpn0cu$2i672$1@dont-email.me> <vpn1j5$2ia4s$1@dont-email.me> <oas971O1qTDVwc65gb1FTR0nS7Y@jntp>
 <U5V3Um0RHkChz1dRX-OkGK9VBWc@jntp> <3DiHhMpGKZm9XLyE2e9bwKMlyDo@jntp> <MVuA58Y56dN-HqVe_2WPam2X84U@jntp>
 <9l0W7Z_B53Q745nmuJQl5m09fJQ@jntp>
Newsgroups: sci.math
JNTP-HashClient: EiLjgwup2zm_gfu3cxpVM-MU1YM
JNTP-ThreadID: O5CXkAcAe1D7_dx2s1eq7KbScfI
JNTP-ReferenceUserID: 4@nemoweb.net
JNTP-Uri: https://www.nemoweb.net/?DataID=VMFIilIzgkSEOgy4b8XVfnxCsLc@jntp
User-Agent: Nemo/1.0
JNTP-OriginServer: nemoweb.net
Date: Wed, 26 Feb 25 19:18:28 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/115.0
Injection-Info: nemoweb.net; posting-host="88d8e3fc77776d6bcc186faa1aefc7625bd3eae9"; logging-data="2025-02-26T19:18:28Z/9223160"; posting-account="190@nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: Python <jp@python.invalid>
Bytes: 2376
Lines: 26

Le 26/02/2025 à 20:13, Richard Hachel a écrit :
> Le 26/02/2025 à 19:56, Python a écrit :
>> Le 26/02/2025 à 19:50, Richard Hachel a écrit :
>>> Le 26/02/2025 à 19:23, Python a écrit :
>>> 
>>>> i is the equivalence class of the polynomial X in the quotient ring [actually a 
>>>> field] R[X]/(X^1+1).
>> 
>>>> From that you can deduce that i^2 = -1.
>>> 
>>>  Yes.
>> 
>> Well... Could you show it? I can.
> 
> Can you show what i is the equivalence class of the polynomial X in the quotient 
> ring [actually a field] R[X]/(X^4+1)?

This is a *definition* and definitely NOT you lie about "posing than i^2 = 
-1 as a definition". 

The point is to show that this definition is consistent (it is) and to 
show that, then, i^2 = -1.

Again: you wrote "Yes". So can you show it? Or will you chicken out as 
usual?