Deutsch English Français Italiano |
<X4DOpQdIbRYjwO8MjwI9x3PkuWs@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp Message-ID: <X4DOpQdIbRYjwO8MjwI9x3PkuWs@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: Contradiction of bijections as a measure for infinite sets References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <uufegr$3p7r0$1@i2pn2.org> <XNMbPeWA6KdZNjVAaRrj0SXXhxo@jntp> <e392b515-c9ad-4e57-8edd-ceedc8b67bea@att.net> <XXPbPRsdhaYaKB7KZdQr_ljWUOk@jntp> <uujudu$115r$1@dont-email.me> <n4HHLvESP6YbxyE8Pjituhs1tXA@jntp> <uum5ro$1me2$2@i2pn2.org> <a11cJb6UeQwD0CWp65uJADe02q0@jntp> <uum9j3$1me2$3@i2pn2.org> Newsgroups: sci.math JNTP-HashClient: HYf4V2eISyNjOPXIgGXPLNOuVTg JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY JNTP-Uri: http://news2.nemoweb.net/?DataID=X4DOpQdIbRYjwO8MjwI9x3PkuWs@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Fri, 05 Apr 24 08:56:55 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="48fd2b1f484c46a64b64ce96d8a3d29d23ea03ed"; logging-data="2024-04-05T08:56:55Z/8806157"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2239 Lines: 16 Le 04/04/2024 à 15:22, Richard Damon a écrit : > On 4/4/24 9:07 AM, WM wrote: >>> It doesn't, Bijections are always between two DISTINCT sets, not a set >>> and a piece of itself thought of as a set. >>> >> "In mathematics, a set A is Dedekind-infinite (named after the German >> mathematician Richard Dedekind) if some proper subset B of A is >> equinumerous to A. Explicitly, this means that there exists a bijective >> function from A onto some proper subset B of A." Wikipedia. > Right, but that "Proper Subset" is considered as an independent item, > not as just pieces of the original set. Nevertheless it is a piece of the original set. Regards, WM