Deutsch English Français Italiano |
<XejqfxarpfFfcNKxXHRyI7p6XxQ@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!3.eu.feeder.erje.net!feeder.erje.net!fdn.fr!usenet-fr.net!pasdenom.info!from-devjntp Message-ID: <XejqfxarpfFfcNKxXHRyI7p6XxQ@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: Re: how References: <qHqKnNhkFFpow5Tl3Eiz12-8JEI@jntp> <85ee8b6b-daed-47b5-a4d3-25164ed8203c@att.net> <qTugrY-H0bH8YiWs08HQPq9TnPU@jntp> <158f436b-3159-4055-9cf4-b221b61f6261@att.net> <vJHfJccwvHHlvdvzO5O9qa3PA28@jntp> <460e9017-ed20-461e-9adb-e16db93c6119@att.net> <0fqGxowmfTbMj7rQlHlTeG-h1Dk@jntp> <cd5609a6-d98f-48fa-9574-7db19481a5fd@att.net> <doQDrJl4xLXY-Ml9z444aw3p-Jg@jntp> <07225a5f-8007-4fbb-a8fa-c741797d2b65@att.net> Newsgroups: sci.math JNTP-HashClient: YayfTcyfHIAuNVc7MokftypJvic JNTP-ThreadID: 4YLc1knY-8u5i_KQ0oWqy89D7aY JNTP-Uri: http://news2.nemoweb.net/?DataID=XejqfxarpfFfcNKxXHRyI7p6XxQ@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Thu, 13 Jun 24 14:45:47 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="25d5a506365fc8262443ce1bd287e5d0233c1bef"; logging-data="2024-06-13T14:45:47Z/8900210"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: WM <wolfgang.mueckenheim@tha.de> Bytes: 2604 Lines: 39 Le 13/06/2024 à 15:16, Jim Burns a écrit : > On 6/13/2024 6:55 AM, WM wrote: >> Le 12/06/2024 à 23:12, Jim Burns a écrit : > >>> If any natural number is undefinable, then >>> the first undefinable has a definable predecessor. >> >> That is your error. > >> The definable numbers are definable and >> have definable successors. > > The minimal inductive set contains > all and only finite von Neumann ordinals. Yes. I call it ℕ_def. > >> You will never get into the dark numbers by >> counting or defining. > > There is no final finite von Neumann ordinal. Correct. That is the reason why you cannot leave this collection. > > By 'natural number' I mean > 'finite von Neumann ordinal'. That implies the existence of a FISON and hence definable number. Induction means existence of FISONs. > > By ℕ I mean > minimal inductive set. That is what I call ℕ_def. By induction we prove that ℵo numbers of ℕ remain before ω. Regards, WM