| Deutsch English Français Italiano |
|
<XmWkVwNVTy8QHqeS0TsrPZNuk_c@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.mixmin.net!proxad.net!feeder1-2.proxad.net!usenet-fr.net!pasdenom.info!from-devjntp
Message-ID: <XmWkVwNVTy8QHqeS0TsrPZNuk_c@jntp>
JNTP-Route: nemoweb.net
JNTP-DataType: Article
Subject: Re: Division of two complex numbers
References: <zMjaMvWZUkHX6SOb195JTQnVpSA@jntp> <l8LT_eq8GhpxVVQxWtwWIRNR90o@jntp> <f3aJzM9fFsoPFMeeAuDqE0UYFYw@jntp>
<3OCPm1fExu73aCqhbosWeWpssJM@jntp> <HiiX_DciB8TjyK4p5hsbqJx52xs@jntp> <pn08rF_5GGMziz3K6TnJrhlBJek@jntp>
<vmm8do$3cetq$2@dont-email.me> <1f331uj8cjsge$.rox7zzvx5o63$.dlg@40tude.net> <hJUop495V-7lOEA98AQwiM7l6-Q@jntp>
<vmmcjk$3dtpt$1@dont-email.me>
Newsgroups: sci.math
JNTP-HashClient: UPg18dchw1P6nLJr6tC2OwsAEi4
JNTP-ThreadID: EDRXv_p0dplN4woC0vmk_fQazIU
JNTP-Uri: http://www.nemoweb.net/?DataID=XmWkVwNVTy8QHqeS0TsrPZNuk_c@jntp
User-Agent: Nemo/1.0
JNTP-OriginServer: nemoweb.net
Date: Mon, 20 Jan 25 20:51:40 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/115.0
Injection-Info: nemoweb.net; posting-host="7a226b0f6c2d664790534afd7e847737d5df5486"; logging-data="2025-01-20T20:51:40Z/9181360"; posting-account="190@nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: Python <jp@python.invalid>
Bytes: 4111
Lines: 77
Le 20/01/2025 à 21:44, "Chris M. Thomasson" a écrit :
> On 1/20/2025 12:20 PM, Python wrote:
>> Le 20/01/2025 à 21:09, Tom Bola a écrit :
>>> Am 20.01.2025 20:33:12 Moebius schrieb:
>>>
>>>> Am 20.01.2025 um 19:27 schrieb Python:
>>>>> Le 20/01/2025 à 19:23, Richard Hachel a écrit :
>>>>>> Le 20/01/2025 à 19:10, Python a écrit :
>>>>>>> Le 20/01/2025 à 18:58, Richard Hachel a écrit :
>>>>>>>>>> Mathematicians give:
>>>>>>>>>>
>>>>>>>>>> z1/z2=[(aa'+bb')/(a'²+b'²)]+i[(ba'-ab')/(a'²+b'²)]
>>>>>>>>>>
>>>>>>>>>> It was necessary to write:
>>>>>>>>>> z1/z2=[(aa'-bb')/(a'²-b'²)]+i[(ba'-ab')/(a'²-b'²)]
>>>>>>
>>>>>>> I've explained how i is defined in a positive way in modern
>>>>>>> algebra. i^2 = -1 is not a definition. It is a *property* that can
>>>>>>> be deduced from a definition of i.
>>>>>>
>>>>>> That is what I saw.
>>>>>>
>>>>>> Is not a definition.
>>>>>> It doesn't explain why.
>>>>>>
>>>>>> We have the same thing with Einstein and relativity.
>>>>>>
>>>>>> [snip unrelated nonsense about your idiotic views on Relativity]
>>>>>
>>>>>> It is clear that i²=-1, but we don't say WHY. It is clear however
>>>>>> that if i is both 1 and -1 (which gives two possible solutions) we
>>>>>> can consider its square as the product of itself by its opposite,
>>>>>> and vice versa.
>>>>>
>>>>> I've posted a definition of i (which is NOT i^2 = -1) numerous
>>>>> times. A "positive" definition as you asked for.
>>>>
>>>> I've already told this idiot:
>>>>
>>>> Complex numbers can be defined as (ordered) pairs of real numbers.
>>>>
>>>> Then we may define (in this context):
>>>>
>>>> i := (0, 1) .
>>>>
>>>> From this we get: i^2 = -1.
>>>
>>> For R.H.
>>> By the binominal formulas we have: (a, b)^2 = a^2 + 2ab + b^2
>>
>> Huh? This is not the binomial formula which is (a + b)^2 = a^2 + 2ab + b^2
>>
>> (a, b)^2 does not mean anything without any additional definition/context.
>>
>>> So we get: (0, 1)^2 ) 0^2 + 2*(0 - 1) + 1 = 0 + (-2) + 1 = -1
>>
>> you meant (0, 1)^2 = 0^2 + 2*(0 - 1) + 1 = 0 + (-2) + 1 = -1 ?
>>
>> This does not make sense without additional context.
>>
>> In R(epsilon) = R[X]/X^2 (dual numbers a + b*epsilon where epsilon is
>> such as
>> epsilon =/= 0 and epsilon^2 0) we do have :
>>
>> (0, 1) ^ 2 = 0
>>
>>
>
> vec2 ct_cmul(in vec2 p0, in vec2 p1)
> {
> return vec2(p0.x * p1.x - p0.y * p1.y, p0.x * p1.y + p0.y * p1.x);
> }
So what? This is not an application of the binomial formula...
What's you point?