Deutsch English Français Italiano |
<a09e9778fd24e8af1427aae056c25971464d6237@i2pn2.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.quux.org!news.nk.ca!rocksolid2!i2pn2.org!.POSTED!not-for-mail From: Richard Damon <richard@damon-family.org> Newsgroups: sci.math Subject: Re: 2N=E Date: Thu, 31 Oct 2024 07:36:48 -0400 Organization: i2pn2 (i2pn.org) Message-ID: <a09e9778fd24e8af1427aae056c25971464d6237@i2pn2.org> References: <vb4rde$22fb4$2@solani.org> <vf52gf$sc1t$2@dont-email.me> <d854b742bc974c19b0106fa51222bbb640e2d92d@i2pn2.org> <b2090fd4-8329-4c3c-9698-a1e7697040b1@tha.de> <6c56b6df33cedd35cac468735501d2d89ad19048@i2pn2.org> <vf66uf$128bg$1@dont-email.me> <9e98e573c0368690d336299ab78121c3240aa8e7@i2pn2.org> <vf8bqn$1gqlu$1@dont-email.me> <351593f2-200c-4df5-a93f-9362b8b2bf91@att.net> <vf8qk8$1jkh9$1@dont-email.me> <5b701e07-18aa-42ab-964b-0ca84e1776ca@att.net> <fb930b22-7f79-4a10-858d-a1a9faccc9b9@tha.de> <e2e906ae-48c5-453b-a38f-94c1ebc9ba6b@att.net> <vfgiqa$38oob$1@dont-email.me> <d781add9-cd6b-4fff-9601-111c74f4ae32@att.net> <vfgqa8$39o4h$1@dont-email.me> <a45b5e62-4b8c-4428-83ef-8b9bf62d6981@att.net> <vfj3e9$1e96h$1@solani.org> <40b398d1-40c5-45e9-8615-1cf437af0185@att.net> <vfoqi1$14lcd$6@dont-email.me> <3537899e-e951-4138-b56c-fc76340762b8@att.net> <vftj9t$26ql2$1@dont-email.me> <8b31df46-1361-4dd1-aed3-1f42039af960@att.net> <vfu2qi$29m4j$2@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 31 Oct 2024 11:36:48 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="286438"; mail-complaints-to="usenet@i2pn2.org"; posting-account="diqKR1lalukngNWEqoq9/uFtbkm5U+w3w6FQ0yesrXg"; User-Agent: Mozilla Thunderbird Content-Language: en-US X-Spam-Checker-Version: SpamAssassin 4.0.0 In-Reply-To: <vfu2qi$29m4j$2@dont-email.me> Bytes: 2604 Lines: 22 On 10/30/24 3:52 PM, WM wrote: > On 30.10.2024 17:52, Jim Burns wrote: >> On 10/30/2024 11:27 AM, WM wrote: > >>> If infinity is complete, >>> the we can double all natural numbers with the result >>> (0, ω)*2 = (0, ω*2). >>> Then some products are in the interval (ω, ω*2). >> >> ω is infinite. > > Do all numbers between 0 and ω exist such that they can be doubled? > > Regards, WM > Between as in exclusive, YES, as that is just the set of the Natural Numbers (since that is the domain that defines omega). All Natural Numbers can be doubled and get a number that is in that set. If you include omega, then no, omega doubled is two omega, but the rest of the set doubles and stays in the set.