Deutsch   English   Français   Italiano  
<a0aff8d9ca313d39093282bca3d2d2505092e153@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail
From: Richard Damon <richard@damon-family.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Thu, 9 Jan 2025 07:18:25 -0500
Organization: i2pn2 (i2pn.org)
Message-ID: <a0aff8d9ca313d39093282bca3d2d2505092e153@i2pn2.org>
References: <vg7cp8$9jka$1@dont-email.me> <vksicn$16oaq$7@dont-email.me>
 <8e95dfce-05e7-4d31-b8f0-43bede36dc9b@att.net> <vl1ckt$2b4hr$1@dont-email.me>
 <53d93728-3442-4198-be92-5c9abe8a0a72@att.net> <vl5tds$39tut$1@dont-email.me>
 <9c18a839-9ab4-4778-84f2-481c77444254@att.net> <vl87n4$3qnct$1@dont-email.me>
 <8ef20494f573dc131234363177017bf9d6b647ee@i2pn2.org>
 <vl95ks$3vk27$2@dont-email.me> <vl9ldf$3796$1@dont-email.me>
 <vlaskd$cr0l$2@dont-email.me> <vlc68u$k8so$1@dont-email.me>
 <vldpj7$vlah$7@dont-email.me>
 <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org>
 <vlei6e$14nve$1@dont-email.me> <66868399-5c4b-4816-9a0c-369aaa824553@att.net>
 <vlir7p$24c51$1@dont-email.me> <412770ca-7386-403f-b7c2-61f671d8a667@att.net>
 <vllg47$2n0uj$3@dont-email.me> <vllm44$2oeeq$1@dont-email.me>
 <vlm2fv$2qk9u$2@dont-email.me> <59af1502-0bc9-4266-b556-6164edb6a8d4@att.net>
 <vlmscv$2vgqf$1@dont-email.me>
 <9a22a29bfd5af29db5bad5f3cae537665b8dafd7@i2pn2.org>
 <vlochd$3akpm$2@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 9 Jan 2025 12:18:26 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="2766867"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="diqKR1lalukngNWEqoq9/uFtbkm5U+w3w6FQ0yesrXg";
User-Agent: Mozilla Thunderbird
In-Reply-To: <vlochd$3akpm$2@dont-email.me>
X-Spam-Checker-Version: SpamAssassin 4.0.0
Content-Language: en-US
Bytes: 2585
Lines: 17

On 1/9/25 6:39 AM, WM wrote:
> On 09.01.2025 01:07, joes wrote:
>> Am Wed, 08 Jan 2025 22:57:52 +0100 schrieb WM:
> 
>>> The rule is for n there is n+1. But the successor is not created but
>>> does exist. How far do successors reach? Why do they not reach to ω-1?
>>> Where do they cease before?
>> They don't cease. They simply aren't in the same league, if you will.
> 
> Cantor will. Every set of numbers of the first and second number class 
> has a smallest element. Hence they all are on the ordinal line.
> 
> Regards, WM
> 

Which doesn't prove your claim, becuase you logic is invalid.

You brain is just incapable of handling the needed concepts.