Deutsch   English   Français   Italiano  
<af38bb98f2bad271a1883903959de9f6cb9d1d3b@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail
From: joes <noreply@example.org>
Newsgroups: sci.math
Subject: Re: Replacement of Cardinality
Date: Wed, 28 Aug 2024 04:20:59 -0000 (UTC)
Organization: i2pn2 (i2pn.org)
Message-ID: <af38bb98f2bad271a1883903959de9f6cb9d1d3b@i2pn2.org>
References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp>
	<980a0ec7476c9dc5823e59b2969398bd39d9b91d@i2pn2.org>
	<va5c09$3vapv$1@dont-email.me> <h6Deptvp2nWZ7A-WxxE_8LCEIYY@jntp>
	<8d5b0145-b30d-44d2-b4ff-b01976f7ca66@att.net>
	<WtY45o_2xWeSk0s5VFpkO7OO7b0@jntp>
	<bd225e98-2fa5-49d5-806e-f25e2c8f24da@att.net>
	<MyfajwdXdoZZDQyGfKtmPKpt08o@jntp>
	<6cc86827-def3-4948-9e69-a3fea9e86c06@att.net>
	<vagheo$24vpo$4@dont-email.me> <6SLKsYqqtl1spoN6trAGFCEcAxc@jntp>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 28 Aug 2024 04:20:59 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="4176253"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM";
User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a
 git.gnome.org/pan2)
X-Spam-Checker-Version: SpamAssassin 4.0.0
Bytes: 2028
Lines: 18

Am Tue, 27 Aug 2024 19:36:08 +0000 schrieb WM:
> Le 26/08/2024 à 02:15, Moebius a écrit :
>> Am 25.08.2024 um 23:18 schrieb Jim Burns:
>>> On 8/25/2024 3:35 PM, WM wrote:
>> 
>>>> Dark numbers are not any bounds.
>> 
>> Fascinating: So we have that there are "dark numbers" which are smaller
>> (larger) than each and every s e SB (n e IN), but they are no bounds?
> 
> Dark natural numbers are larger than any visible natural number but
> smaller than their bound omega.
> Dark unit fractions are smaller than any visible unit fractions but
> larger than their bound 0.
This sounds an awful lot like the hyperreal numbers.

-- 
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.