Deutsch English Français Italiano |
<e066fe42eeeac7b6371ebaa0f9b136be15128932@i2pn2.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!i2pn.org!i2pn2.org!.POSTED!not-for-mail From: joes <noreply@example.org> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Thu, 28 Nov 2024 17:36:23 -0000 (UTC) Organization: i2pn2 (i2pn.org) Message-ID: <e066fe42eeeac7b6371ebaa0f9b136be15128932@i2pn2.org> References: <vg7cp8$9jka$1@dont-email.me> <cbac19e1-c2fe-47d0-84ce-88000729988c@tha.de> <96af151c-285d-4161-842a-63019cac9699@att.net> <vhti1v$1r2tr$2@dont-email.me> <a7ec6cd4-3a9b-4671-8594-56586c0ce917@att.net> <vhvbs4$28n6o$2@dont-email.me> <09f8a86f-3f75-4af8-a190-0def76c1ab82@att.net> <vhvviq$2bjrd$1@dont-email.me> <68dc9b71-cf5d-4614-94e2-8a616e722a63@att.net> <vi03un$2cv9g$1@dont-email.me> <67d9867b-2614-4475-975c-938bafca5c00@att.net> <vi1vep$2pjuo$1@dont-email.me> <a4ab640d-e482-42b0-bfb8-f3690b935ce1@att.net> <vi41rg$3cj8q$1@dont-email.me> <d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me> <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Thu, 28 Nov 2024 17:36:23 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="286804"; mail-complaints-to="usenet@i2pn2.org"; posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM"; User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2) X-Spam-Checker-Version: SpamAssassin 4.0.0 Bytes: 2752 Lines: 20 Am Thu, 28 Nov 2024 18:09:16 +0100 schrieb WM: > On 28.11.2024 17:45, joes wrote: >> Am Thu, 28 Nov 2024 11:39:05 +0100 schrieb WM: > >>> A simpler arguments is this: All endsegments are in a decreasing >>> sequence. >> There is no decrease, they are all infinite. > Every endsegment has one number less than its predecessor. > That is called decrease. It is called a subset. It is still infinite >>> Before the decrease has reached finite endsegments, all are infinite >>> and share an infinite contents from E(1) = ℕ on. They have not yet had >>> the chance to reduce their infinite subset below infinity. >> All segments are infinite. Nothing can come "afterwards". > Then the intersection is never empty. No finite intersection anyway. -- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math: It is not guaranteed that n+1 exists for every n.