Deutsch   English   Français   Italiano  
<e3a82a9db00676783d15c027dc86389cb545848e@i2pn2.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!i2pn.org!i2pn2.org!.POSTED!not-for-mail
From: joes <noreply@example.org>
Newsgroups: sci.math
Subject: Re: The set of necessary FISONs
Date: Sun, 2 Feb 2025 14:21:21 -0000 (UTC)
Organization: i2pn2 (i2pn.org)
Message-ID: <e3a82a9db00676783d15c027dc86389cb545848e@i2pn2.org>
References: <vmo1bs$1rnl$1@dont-email.me> <vmvn1h$25r19$1@dont-email.me>
	<27377646-137a-4f8f-a7bb-a75707b2da96@att.net>
	<vn2gcf$2ouuo$2@dont-email.me>
	<d90c478d-6806-4ffe-83be-a5d7674bb5e3@att.net>
	<b82a0915-400a-4f77-9309-44eef432e9f4@att.net>
	<vn50eo$3kgi6$2@dont-email.me>
	<4d349964-211f-42f1-936f-81c22ae54cb5@att.net> <vn7vns$ra97$2@dont-email.me>
	<e3f89d8c-d214-453a-91f4-9023e744fed2@att.net>
	<vna72s$1ng1k$2@dont-email.me>
	<6e0c8ab2-402a-43a5-a348-0c727eae6a2e@att.net>
	<vnat4s$1s6ha$4@dont-email.me>
	<e43b1c65-4424-4e0c-9b2e-65e0e463815b@att.net>
	<vnconr$29v5v$1@dont-email.me>
	<87e2e677c7802c9c17df6063f340cb5857d5700b@i2pn2.org>
	<vnd4h8$2c0st$1@dont-email.me>
	<c50fde56e7e0c4cf4842d4944ea3d1917c75eb41@i2pn2.org>
	<vnfftp$2rv3t$1@dont-email.me>
	<680d4249c9bf1504231a53732ac5096184261495@i2pn2.org>
	<vngumj$34ss1$6@dont-email.me>
	<12a38458-bfb9-4611-9072-eadbb166c0ec@att.net> <vnl5ll$3ae6$3@dont-email.me>
	<d47ddb72-2ab1-4923-b8db-2d01777f20ab@att.net> <vnnknt$knr7$7@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 2 Feb 2025 14:21:21 -0000 (UTC)
Injection-Info: i2pn2.org;
	logging-data="2280353"; mail-complaints-to="usenet@i2pn2.org";
	posting-account="nS1KMHaUuWOnF/ukOJzx6Ssd8y16q9UPs1GZ+I3D0CM";
User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a
 git.gnome.org/pan2)
X-Spam-Checker-Version: SpamAssassin 4.0.0
Bytes: 3211
Lines: 33

Am Sun, 02 Feb 2025 12:25:49 +0100 schrieb WM:
> On 01.02.2025 20:21, Jim Burns wrote:
>> On 2/1/2025 7:56 AM, WM wrote:
> 
>>> There is the assumption that a set with U(F(n)) = ℕ exists.
It’s not an assumption. Hint: F(n+1) = F(n) u n+1 and then
U({F(n) for all n e N}).

>>> Without changing the union we can remove every element by induction.
>>> No element remains. The set does not exist.
>> 
>> Each finiteᵒᵘʳ initial segment F(k) of ⋃{F(n)} can grow¹ to another
>> initial segment F(k+1)
>> which is also finiteᵒᵘʳ, and is larger than F(k),
>> and is not larger than ⋃{F(n)}
>> {F(n}} holds each finiteᵒᵘʳ initial segment F(k) ⋃{F(n)} is larger than
>> each F(k).
> 
> But all F(n) can be discarded without changing the union.
The union of a nonempty set is not empty.

> F(1) can be discarded. If F(n) can be discarded, then F(n+1) can be
> discarded.
> Note: Mathematical induction is a method for proving that a statement
> P(n) is true for every natural number n that is, that the infinitely
> many cases P(0),P(1),P(2),P(3),... all hold. [Wikipedia]
But P(ω) does not hold.

> Therefore if U(F(n)) = ℕ, then  { } = ℕ
There are no naturals with infinite segments.

-- 
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.