Deutsch   English   Français   Italiano  
<fTsvmGSlASVzQ_XgoQ2SIVFhqpg@jntp>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp
Message-ID: <fTsvmGSlASVzQ_XgoQ2SIVFhqpg@jntp>
JNTP-Route: news2.nemoweb.net
JNTP-DataType: Article
Subject: Re: Replacement of Cardinality
References: <hsRF8g6ZiIZRPFaWbZaL2jR1IiU@jntp> <en_fjxuLKegQPxOwdC8lXsKVbbI@jntp>
 <b6f3db1f122addc847d551f14766c9bc090a2d39@i2pn2.org> <va1ra4$3bld7$1@dont-email.me> <cB1y4KsEseyrfvMXAJJ2TijMcX4@jntp>
 <va31ko$3havl$1@dont-email.me> <VqqLFKi62z9rl82Gg4Mxsdp4YYg@jntp> <va4h96$3r7nv$1@dont-email.me>
 <H5iV5HXUBwUzWtVKRZj7h4N2LdA@jntp> <ff390a80279179f6d2f4660ed19c150a88c787d6@i2pn2.org>
Newsgroups: sci.math
JNTP-HashClient: 1d_2duqgJoumOo3FkytAe1Ph-9E
JNTP-ThreadID: KFm3f7lT2HjaTSiMfnv5xqZoSBw
JNTP-Uri: http://news2.nemoweb.net/?DataID=fTsvmGSlASVzQ_XgoQ2SIVFhqpg@jntp
User-Agent: Nemo/0.999a
JNTP-OriginServer: news2.nemoweb.net
Date: Wed, 21 Aug 24 14:58:50 +0000
Organization: Nemoweb
JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36
Injection-Info: news2.nemoweb.net; posting-host="82b75c1d0a83e677ff646b52485f72f8b23749df"; logging-data="2024-08-21T14:58:50Z/8995181"; posting-account="217@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com"
JNTP-ProtocolVersion: 0.21.1
JNTP-Server: PhpNemoServer/0.94.5
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-JNTP-JsonNewsGateway: 0.96
From: WM <wolfgang.mueckenheim@tha.de>
Bytes: 2084
Lines: 17

Le 21/08/2024 à 15:13, joes a écrit :
> Am Wed, 21 Aug 2024 12:24:14 +0000 schrieb WM:

>> It is an end which proves dark numbers.
> Why should there be an end in the first place?

There is indisputably an interval without unit fractions, namely (-oo, 0]. 
That indicates an end before. It proves an end before. Only cranks can 
deny that.

> Are there not infinitely
> many unit fractions?

Yes, the dark unit fractions cannot be counted through. There are more 
than can be counted.

Regards, WM