Deutsch English Français Italiano |
<hUiRW96P1JfSkYyEkcA0c42swks@jntp> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder8.news.weretis.net!pasdenom.info!from-devjntp Message-ID: <hUiRW96P1JfSkYyEkcA0c42swks@jntp> JNTP-Route: news2.nemoweb.net JNTP-DataType: Article Subject: =?UTF-8?Q?L=27=C3=A9lasticit=C3=A9=20des=20temps=2C=20des=20distances=2C?= =?UTF-8?Q?=20et=20des=20longueurs=20=28=33=29?= Newsgroups: fr.sci.physique JNTP-HashClient: i-RUQ2cTmrxx_sBsmhviZgwpXCA JNTP-ThreadID: rrQHEyOjUCZRMqu5iWP88RLAvec JNTP-Uri: http://news2.nemoweb.net/?DataID=hUiRW96P1JfSkYyEkcA0c42swks@jntp User-Agent: Nemo/0.999a JNTP-OriginServer: news2.nemoweb.net Date: Mon, 11 Mar 24 15:37:07 +0000 Organization: Nemoweb JNTP-Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36 Injection-Info: news2.nemoweb.net; posting-host="8e9c64a29b0e5dc904f270dd7ef68fe2b6d8e460"; logging-data="2024-03-11T15:37:07Z/8768471"; posting-account="4@news2.nemoweb.net"; mail-complaints-to="julien.arlandis@gmail.com" JNTP-ProtocolVersion: 0.21.1 JNTP-Server: PhpNemoServer/0.94.5 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit X-JNTP-JsonNewsGateway: 0.96 From: Richard Hachel <r.hachel@tiscali.fr> Bytes: 2252 Lines: 37 On pratique alors inversement. On envoie le faisceau lumineux de l'avant du wagon vers l'arrière. Soit: <http://news2.nemoweb.net/jntp?hUiRW96P1JfSkYyEkcA0c42swks@jntp/Data.Media:1> Nous obtenons: <http://news2.nemoweb.net/jntp?hUiRW96P1JfSkYyEkcA0c42swks@jntp/Data.Media:2> Soit : To'=To.sqrt[(1-Vo.c)/(1+Vo/c)] Mais aussi D'=D.sqrt[(1-Vo.c)/(1+Vo/c)] Nous avons donc vu qu'il existait une dilation des chronotropies et des distances parcourues, mais, de fils en aiguilles, nous nous rendons compte que le longueur du wagon elle-même va être touchée. C'est la notion de contraction des longueurs par changement de référentiel. l'=l.sqrt(1-Vo²/c²) Contraction valable pour un observateur neutre, c'est à dire transversal. La longueur du wagon va devenir, selon la POSITION de l'observateur: l'=l.sqrt(1-Vo²/c²)/(1+cosµ.Vo/c) Si vous ne comprenez pas quelque chose, n'hésitez pas à demander. R.H.